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It is shown that the Schwarzschild solution is the only spherically symmetric solution of the Einstein 
vacuum field equations, even when the differentiability of the metric is weakened to the extent of 
permitting solutions which are Co, piecewise Cl. Petrov's purported counterexample is analyzed and 
shown to be essentially equivalent to Schwarzschild's example. 

I. INTRODUCTION 

I N a recent paper, Petrovl has called attention to 
the relatively stringent assumptions under which 

Birkhoff's theorem2 is usually derived. Because the 
transformation of a tensor involves derivatives of 
the coordinates, the assumption that the metric 
tensor of a particular manifold is to be of class ek 

reduces admissible coordinate transformations at 
least to class ek+l. Hence, the conventional proof of 
Birkhoff's theorem, requiring coordinate transforma­
tions merely to possess transformation coefficients 
[i.e., x(x') to be el

], may force on a given metric a 
coordinate system that artificially reduces its con­
tinuity properties to class CO, whereas in a different 
coordm,ate system its differentiability may well be 
e2 or even higher. To emphasize this general remark, 
Petrov presents what purports to be a class of 
spherically symmetric solutions of the vacuum field 
equations of Einstein that are not equivalent to 
Schwarzschild's solution. 
. This paper has led us to launch a somewhat more 

* Supported in part by Aerospace Research Laboratories 
and Air Force Office of Scientific Research. 
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1 A. Z. Petrov, Zh. Eksperim. i Teor. Fiz. 44, 1525 (1963); 
[EngliSh transl: Soviet Physics-JETP 17, 1026 (1963)]. 

I G. D. Birkhoff, Relativity and Modern Physics (Cambridge 
University Press, New York, 1923), p. 256. 

comprehensive investigation of solutions of the 
vacuum field equations that possess spherical sym­
metry but possibly a low-order differentiability. 
Our essential result is to confirm the uniqueness of 
Schwarzschild's solution, as long as spherical sym­
metry is preserved. Petrov's solution turns out to be 
equivalent to Schwarzschild's though Petrov's 
chosen coordinates have certain attractive features 
that we comment on. However, we examine the 
possible existence of non-Schwarzschild solutions 
more broadly than was done by Petrov, and indicate 
the degree of arbitrariness that results from dropping 
the requirement of strict spherical symmetry. This 
examination may be performed either on the basis 
of a four-dimensional approach, or in terms of 
propagation of Cauchy data off a spacelike three­
dimensional hypersurface, e.g., in a Hamiltonian 
formalism elaborated by Dirac.3 Section II of this 
paper analyzes Petrov's solution(s), whereas Secs. 
III and IV are concerned with the freedom of con­
tinuation of solutions in the more general contexts 
indicated above. 

II. PETROV'S SOLUTION 

Let us consider the following solution of the 
Einstein field equations for the vacuum as given by 
Petrovl (with minor changes in notation and several 
corrections of typographical errors). 

3 P. A. M. Dirac, Phys. Rev. 114, 924 (1959). 
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ds' = tY-'(-l ax02 
- dx12 

- d02 
- sin2 8 dq,2), (2.1) 

where tY and "Y depend only on the variables Xl and 
X

O and are defined by the equations 

tY.o = v(x°)-y 
(2.2) 

"Y.l"'.l - "YtY.l1 = V.OI 

where v is an arbitrary function of X
O and C is a 

constant. If we define 

tY == (1/c)(4p - 1), 
the second of Eqs. (2.2) yields 

P71 = 4p8 + m + (nCV + m), 

(2.3) 

(2.4) 

which is the defining equation of the elliptic W eier~ 
strass function, p(x1 + X(XO» whose invariants, g2 
and ga, are obtained from the coefficients of pI and po 
respectively. [The function X(XO) is arbitrary. It is 
of interest to note that the invariant ga contains 
1I(XO) so that at different instants of "time" different 
elliptic functions are used.] 

The above space-time admits a four-parameter 
group of motions whose Killing vectors are 

lA" = 0; cos q, - 0: sin q, cot 8, 

2X" = 0; sin q, + 0: cos q, cot 8, 
(2.5) 

aX" = 0:, 

The first three Killing vectors are evident from 
the manifest spherical symmetry of Eq. (2.1). We 
focus our attention on the fourth Killing vector, f'. 
Employing Eqs. (2.1) and (2.2) we may easily 
compute its nonn 

~2 = ~"'~'" = 1 + CtY. 
From the first of Eqs. (2.2) we have 

r"if; ... = o. 

(2.6) 

(2.7) 

If we confine our attention to those domains where 
t F 0, we can form the vector 

T" == ~-2~1" (2.8) 

It follows from the fact that ~I' is effectively a 
Killing vector in a two~imensional manifold [its 
components lie entirely in the (Xl, XO) surface and 
the coefficients depend only on Xl and xOJ that T" 
is necessarily a gradient. Thus 

In addition, from Eq. (2.2), we can deduce 

(y,-1L,(tY-1),.g"V = -(1 + Cif;). 

(2.9) 

(2.10) 

apart from the region where if; = 0, the Jacobian J 

J -I T.t T.21 
(tY-1).1 (tY-1).2 

does not vanish. 

(2.11) 

Up to this point the assumed differentiability class 
of the arbitrary functions, X and v, did not enter into 
our considerations. We now wish to consider the 
following coordinate transfonnation 

r = i l = if;-\ 

t = ~ """ T 

'{j = 8, 
(2.12) 

It is true that in general if tY and T are of class C1 

the resulting metric may be of class Co. But this 
does not distrub us, in view of the work of Papa­
petrou and Treder.4 In point of fact, perfonning the 
indicated coordinate transfonnation (2.12) we see 
immediately from Eqs. (2.6) through (2.10) that we 
obtain the metric 

d8" = (1 + Q) df _ dT" 
r 1 + Clr 

- r2 d02 
- r'li sin2 8 #1, 

which is not (Jl, but rather analytie. (We recognize 
the constant, C, as the negative of the Schwarz schild 
radius.) 

Alternatively, if we prefer not to perfonn the 
coordinate transfonnations of Eq. (2.12), we can use 
the additional geometric structure available to us by 
the existence of the Killing vector fields in order to 
obtain an invariant· characterization of Petrov's 
space-time. Thus Eq. (2.6) provides us with an 
invariant specification of the function tY, from which 
it follows that Eqs. (2.7) through (2.10) [taken 
together with the remaining Killing vector fields of 
Eq. (2.5)] yield an invariant detennination of the 
essential geometric properties of the solution. That is, 
we see that apart from the capricious properties of 
the particular coordinate system we choose in order 
to exhibit the metric tensor, the solution of Petrov is 
in every invariant sense identical to that of Schwarz­
schild. 

We should like to observe that Petrov's choice of 
coordinates has the virtue of pennitting one to 
continue the solution through the Scbwarzschild 
((singularity" wherc ~2 = 0 and the usual coordinates 
become singular. In this sense the Petrov solution 
is more nearly akin to that of Kruskal.' The poles 
of the elliptic function correspond to the true singu­
larity at r = O. The region where if; ~ 0, corresponds 

4 A. Papapetrou and H. Treder, Math. Nachr. 23, 371 
(1962). 

It is evident from Eqs. (2.6) through (2.10) that, • M. D. Kraskal, Phys. Rev. 119, 1743 (1960). 
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to r -+ txl. The space-time is perfectly well behaved 
in that limit and in fact approaches fiat Minkowski 
space. We see that it is merely Petrov's coordinate 
system (as well as Kruskal's) which becomes singular 
in that limit. 

m. JUMP DISCONTINUITIES OF DERIVATIVES 

Together with Petrov we consider a solution 
spherically symmetric if it possesses an isometry 
(sub)group that permits the introduction of spheri­
cal coordinates, so that under that group each orbit 
is the two-dimensional surface of a three-dimensional 
sphere. With this assumption, the line element may 
be written in the form 

dt2 = A(dx°? + 2B dxo dxl 
- C(dXI)2 

- N 2 dn2
, (3.1) 

dn2 = d02 + sin2 0 dl, 

where A, B, C, and N are functions of XO and Xl 

only. To eliminate the function B we should have to 
perform a coordinate transformation which in the 
(XO, Xl) plane would render the curves XO = const 
and Xl = const each others' orthogonal trajectories. 
If we denote the new coordinates by the symbols 
l, f, it is required that, with 

AC + B2 ¢ 0, (3.2) 
we have 

Cf.ol,o + B(f.ol. l + f,ll.o) + Af.ll,l = O. (3.3) 

In view of the fact that the partial derivatives of 
f, l also enter the new expressions for A and C, 
these new quantities will be of the lower class of 
differentiability of the two quantities, the original 
metric tensor and the transformation coefficients. 
But as the transformation coefficients are restricted 
by the one Eq. (3.3), plus the integrability condi­
tions, the transformation coefficients need not be of 
lower C class (at least locally, i.e., piecewise) than 
the original metric tensor. Let us confine our atten­
tion to a local domain; then we can assert that the 
construction of orthogonal trajectories need not 
introduce a lower piecewise C classification into 
the metric tensor components than the one they 
had to begin with. 

As the next step we consider local coordinate 
transformations that leave the orthogonality condi­
tion unchanged. Such transformations will satisfy 
an equation of the form (3.3), except insofar that 
now the second term on the left vanishes. In particu­
lar, we may adopt as our spacelike coordinate r 
any function of f, l whose gradient is spacelike. 
Such a function is N the so-called luminosity dis­
tance. AssUllling now that N, as a component of the 

metric tensor, is C\ its adoption as a coordinate 
may render some other components of the metric 
tensor Ck-l. Aside from this contingency, the adop­
tion of N as a coordinate will be legitimate if its 
gradient exists (this condition will be satisfied if N 
is at least C1

) and is spacelike. Once we have come 
this far, Birkoff's theorem may be proved in two 
stages: (1) From one of the field equations we find 
that C = 0, A = O. (2) One of the field equations 
contains only reference to A and is of the first dif­
ferential order, 

(d/dr)(r/C) = 1. (3.4) 

Solutions are of the form C = (1 - a/r)-t, where 
the constant of integration a is the only arbitrary 
quantity. Thus this form of solution arises from 
purely local considerations and is quite independent 
of the adoption of any boundary conditions at infinity. 
Positive, vanishing, and negative masses are all 
acceptable. Finally, A is obtained from a quadra­
ture, solving again a first-order equation, which 
possesses as its only constant of integration a trivial 
scale factor of the time axis. 

Hence, the only operation in which the dif­
ferentiability of the metric tensor, and of the coordin­
ate transformations, enters is the adoption of N 
as the coordinate r. For this operation to be meaning­
ful it is necessary that N be piecewise C1

• If it is 
piecewise C\ the metric field in the new coordinate 
system will be piecewise Ck

-\ hence at worst CO. 
The field equations are of the second order, sO one 

should ordinarily require that the solutions be C2
• 

However, it is well known that one can generalize 
the notion of a solution of differential equations to 
functions of lower differentiability when these are 
limits of sequences of solutions of class C2

• Papa­
petrou and Treder' have investigated jumps in the 
first partial derivatives of the metric tensor field 
on the assumption that a field that is CO and only 
piecewise C1 is to be considered a solution of the 
(vacuum) field equations if it can be approximated 
by C2 solutions. Jump discontinuities in any deriva­
tives may come about through the choice or coordi­
nate system, or they may arise in such a manner that 
they cannot be transformed away even by coordi­
nate transformations that are themselves of low 
differentiability. Only the latter situation is of real 
interest. It was found that intrinsic jump discon­
tinuities must lie on characteristic hypersurfaces, 
which are well defined because the metric itself is 
continuous across the hypersurface. 

Accordingly, given a solution of the field equations 
that represents a Schwarzschild metric in some local 
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four-dimensional neighborhood which mayor may 
not be in the vicinity of (spatial) infinity, we may 
consider cutting this solution off along some char­
acteristic hypersurface (these are any null hyper­
surfaces) and continuing it beyond this null hyper­
surface in a manner consistent with the jump 
requirements. If the jump is not to destroy the 
assumed spherical symmetry I the jump hypersurface 
itself must be built up from orbits of the rotational 
isometry (sub)group, i.e., it must be a three-dimen­
sional hypersurface generated by the multiple rota­
tion of a mill curve in the (XO, Xl) plane. Such null 
curves will generally not be mapped into themselves 
by the timelike isometry of the Schwarzschild 
solution, but this is not a necessary requirement for 
our purposes. (The one null surface that is a complete 
orbit under all isometries is the Schwarzschild 
radius. In terms of Kruskal coordinates6 this hyper­
surface, for finite coordinate times, is, however, not 
three- but only two-dimensional.) 

The requirements on the jumps in the first deriva­
tives of the metric, 

(3.5) 

(if the jump is to be intrinsic) are that the normal 
vector k, be lightlike (this requirement is entirely 
equivalent to the previous statement that the jump 
hypersurface be characteristic, or null), and that the 
coefficients hI" satisfy the conditions 

gl"h,., = 0, hp.pkP = O. (3.6) 

These relationships are the analogs of the conditions 
on gravitational waves that they be transverse­
transverse and tracefree. The same conditions hold, 
incidentally, mutatis mutandis, for jump discontinui­
ties of higher than the first derivatives. We now 
examine whether the jump conditions permit us to 
continue a Schwarzschild solution beyond a null 
surface in such a manner that it becomes inequiva­
lent to the conventional solution beyond the null 
surface, but without violating the requirement of 
spherical symmetry. 

To preserve spherical symmetry, we must, first of 
all, see to it that the discontinuity surface itself be 
composed of orbits corresponding to the spherical 
symmetry isometry, i.e., that it be composed of 
spherical surfaces. Beyond the jump the solution 
in question must maintain spherical symmetry as 
well. This requirement may be restated in terms of 
the line element. The line element will have to be of 
the form (3.1) on both sides of, as well as across the 
surface of discontinuity [which will be a null curve 
in the two-dimensional (r, t) manifold]. How~ver, 

the functions A, B, a, and N need to be only of 
class CO. 

The normal vector of the null surface lies, of 
course, within the null surface itself. But in addition 
it must be perpendicular to all the directions tangen­
tial to the spherical isometry. Thus the vector must 
lie in the (r, t) plane. Within that plane it is the only 
direction tangential to the discontinuity surface. 
From the second of Eqs. (3.6), the tensor hI" is seen 
to have components only within the spherical sym­
metry orbit, i.e., it is in effect a two-dimensional 
tensor (with vanishing trace) defined on that surface. 
Hence hI" possesses only two nonvanishing eigen­
values, whose sum vanishes and whose eigenvectors 
both lie within the spherical surface. If hI" is nonzero, 
it is certainlynondegenerate within the spherical 
surfaces, and its eigenvectors distinguish a pair of 
mutually perpendicular directions on the sphere, 
contrary to the assumption of spherical symmetry.We 
conclude that intrinsic, spherically symmetric jumps 
cannot occur. 

IV. DISCONTINUITmS IN TERMS OF CAUCHY DATA 

It is instructive to review the problem of dis­
continuities in terms of Cauchy data. We shall adopt 
for this purpose the formalism of Dirac,3 which 
permits us to characterize a solution in terms of the 
metric field, and of the second fundamental form, 
of a spacelike three-dimensional hypersurface. 
Though one Riemann-Einstein manifold may be 
represented in terms of more than one set of Cauchy 
data, a set of g ..... , pm" uniquely determines at least 
a neighborhood of a Riemann-Einstein manifold; 
these Cauchy data themselves are not entirely 
arbitrary but must satisfy at each point of the hyper­
surface the four so-called Hamiltonian constraints, 

(4.1) 

and 

p",npmn _ !p2 + (3)R = O. (4.2) 

We shall ask what degree of arbitrariness we have 
in choosing spherically symmetric Cauchy data, 
given the assumption that these data agree at least 
outside some radius R with those typical for the 
Schwarzschild solution. 

Our task is greatly simplified if we choose coordi­
nates XO, Xl so that the coefficient B in the line ele­
ment (3.1) vanishes, a choice which according to the 
discussion given in Sec. 3 does not place excessive 
restrictions on the differentiability class of the metric 
field. In accordance with the spherical symmetry of 
the field desired we give the canonical momentum 
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density field the fonn: 

pH = A IN2P sin (), p22 = A lN2Q sin (), (4.3) 

p33 = sin-2() p22, 

where P, the longitudinal component, and Q, the 
transverse component of the canonical momentum 
density are functions of Xl only, i.e., independent of 
the angies; there is no dependence on xo

, as we define 
our Cauchy data on a X

o = constant three-dimen­
sional hypersurface. The evaluation of the three 
divergence constraints (4.1) then leads to two empty 
relations (those associated with the free indices 2 
and 3, respectively) and one differential condition 
on the two functions P and Q, 

dP + 2 d In N P _ 1.. d(~) Q = O. (4.4) 
dxl dx l A dx1 

We now show that both P and Q can be made to 
vanish by an appropriate choice of hypersurface. 
We evaluate P on the assumption that B = 0, and 
find: 

21aInN 
P = -A1caxo' (4.5) 

It follows that P will vanish if we choose the coordi­
nate Xl to be some function of N, the luminosity 
distance, or if we choose our initial-value hyper­
surface so as to be perpendicular everywhere to the 
surfaces N = constant. As the hypersurface itself 
is only required to be spacelike (and even this re­
quirement is perhaps not absolutely necessary), all 
that is required for our construction to succeed is 
that the metric field be piecewise Co. 

If P = 0, then Q must vanish as well, because of 
Eq. (4.4). The Hamiltonian constraints (4.1), (4.2) 
thereby reduce to the single condition (3) R = O. 
Evaluation of this condition leads to the result 
that with our assumption of spherical symmetry 
the curvature scalar can be made free of second 
derivatives of the field variables describing the 
metric field by adopting for the three-dimensional 
line element the fonn: 

d,s2 = b-1 dN2 + N 2 dO\ (4.6) 

where band N are to be functions of r only. N is the 
luminosity distance, as before, and both band N are 
scalars with respect to transfonnations of the radial 
coordinate r. For the fonn (4.6) to be admissible, N 
must be at least piecewise Cl with respect to r. If, 
in addition, the metric field itself is Co, piecewise Cl 

then b will be piecewise Co. The curvature scalar, 
in tenns of band N, turns out to be the expression 

(3)R = (2j~)[b - 1 + N(dbjdN)]. (4.7) 

Requiring this scalar to vanish in some connected 
domain of the r coordinate yields in this domain 

b = 1 - NojN, (4.8) 

No being a constant of integration. This result 
evidently corresponds to the Schwarzschild solution. 
In the vicinity of N = 0 the variable b must approach 
unity if the hypersurface is not to be metrically 
singular at that point. Hence all solutions with 
No r£ 0 have a true singularity at the center. With 
respect to the variables chosen, b and Nt the point 
(N = No, b = 0) does not appear singular, but the 
metric detenninant 

«3) g)l = b-1N 2(dN jdr) sin (), (4.9) 

will vanish at that point unless the coordinate r is 
suitably chosen. This choice involves an asymptotic 
behavior at that point of the fonn 

(4.10) 

For real values of 'Y, r will be real outside the lumi­
nosity distance No. In order to assure reality of f 
for smaller luminosity distances a different, imagi­
nary 'Y would have to be chosen. 

To obtain the parameter r customarily used in 
the conventional presentation of the Schwarzschild 
solution one would have to change the value of 'Y 
at No in order to cover the entire range of luminosity 
distance 0 ~ N ~ Q). It is well known, and can be 
confinned in tenns of the fonnalism employed here, 
that inside No the chosen hypersurface is no longer 
spacelike, but that the metric becomes indefinite. 
If we go through N = No with a constant value of 'Y, 
we are led to a coordinate system that is equivalent 
to the real domain of Kruskal's coordinates. 

Whatever topology we adopt, the condition (4.8) 
prevents us from piecing several inequivalent 
Schwarzschild solutions together in order to obtain 
a new solution that is inequivalent to anyone 
Schwarzschild solution. On the contrary, any such 
spherically symmetric piecing is equivalent to the 
establishment of spherical surfaces with finite source 
(i.e., mass) surface density. Again we find that the 
differential equations lead uniquely to Schwarz­
schild's original solution with a single mass constant 
throughout the domain of validity of the field 
equations. 

Note added in proof: A. Hamoui has very kindly 
called our attention to his paper, which appeared in 
June 1964, Compt. Rend. Acad. Sci. Paris 258, 
6085 (1964), where he obtained results identical 
with some of ours. Unfortunately, this paper had not 
been known to us at the time we submitted our work. 
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Cluster Properties of Multipartic1e Systems* 
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Palmer Physical Laboratory, Princetrm University, Princeton, New Jersey 
(Received 30 June 1964) 

The object of investigation is a system of N particles in nonrelativistic quantum mechanics. The 
particles interact via two- or many-body potentials, for which a sufficient condition is that they be 
square integrable in the relative coordinates of the interacting particles. Cluster properties are derived 
for the time translation operator, for the wave operators, for the transition probabilities, and for the 
S operator. 

INTRODUCTION 

WE consider a system of N particles in non­
relativistic quantum mechanics. The particles 

are assumed to interact via two- or many-body 
forces vanishing sufficiently fast for large separations 
of the particles. An intuitively evident property of 
such a system is the following one: If, at a given time, 
the particles form clusters far separated from each 
other, then the subsequent motion will be approxi­
mately the same as if no forces between the clusters 
were present. Our aim is to formulate this property 
mathematically, to prove it, and to study certain 
consequences for scattering theory. 

CLUSTER PROPERTmS OF THE TIME 
TRANSLATION OPERATOR 

Let Xl •.• XN be the Cartesian coordinates of 
particles 1 ... N. Relative, or internal, coordinates 
of any subsystem of particles are always taken as 
linear combinations of Xl ••• XN' For the time being, 
the potential describing any of the k-body forces 
acting in the system is assumed to be square inte­
grable in the relative coordinates of the k interacting 
particles.1 Once for all, we group the indices 1 ... N 
into n clusters C1 ••• Cn • The Hamiltonian of the 
system is 

H = t H" + V = He + V, 
k-1 

Hk = PU2Mk + hk' 

where V is the sum of all potentials linking particles 
in different clusters, H" the Hamiltonian of the 
subsystem C k, P" and M k the total momentum and 
the total mass of C k, and h" its internal energy. 

* Supported in part by the U. S. Air Force through the 
Air Force Office of Scientific Research. 

1 T. Kato, Trans. Am. Math. Soc. 70, 195 (1951). Note 
added in rroof : For k-body forces with k ;::: 3, square integ­
rability 0 the potentials is not sufficient for the self-adjoint­
ness of H. Kato assumes these potentials to be bounded. 
I am grateful to Professor E. Nelson for pointing out this 
error to me. 
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H, He, Hk , and h" are self-adjoint operators on the 
corresponding Hilbert spaces.1 For any n 3-vectors 
a1 ... a" we define the spatial translation operator 
T(a1 ••• an) on the Hilbert space:te of the N-particle 
system by 

(T(a1 ••• an)f)(X1 '" XN) = f(x~ ••• x~), 

where x~ = Xi + ak for all i E C", and we set a = 
min; ,k lai - a"l. Note that T(a1 ... an) commutes 
with He. The asymptotic independence of the motion 
of the n clusters can be stated as follows: 

Theorem 1. 

lim T(-a 1 

= eiHC
' = II eiH

.', 

"-1 
in the strong sense on :te, uniformly in - <Xl < t < 
+ GO. 

Before we turn to the proof, we note that the assump­
tion of square integrability will be used only for the 
potentials in V. All we shall need about the operators 
h" is their self-adjointness. 

Proof. A dense linear set in :te is spanned by the 
functions 

.. 
f(X1 '" XN) = II e-!<U-b.) 'Mz,,) , (1) 

1&-1 

where y" is the position of the center of mass of 
Ck, fk any square integrable function of the internal 
coordinates z" of Ck and b" an arbitrary 3-vector. 
Thus it is sufficient to prove Theorem 1 for states 
of the form (1), for which we have 

(e iH' - eiHC ')T(a1 '" a,,)f 

= ieiH
' l' dTe- iHr VT(a1 ... a,,)eiHcrf· (2) 

That the right-hand side of (2) is well defined be-
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comes clear in the following. By (2), it is enough to 
show that 

(3) 

The y dependence of (exp iHc1')f can be evaluated 
explicitly, yielding 

I (eiHCTf)(xl ... XN, 1')12 

= IT IL!e-Pi(Ui-bl)' If"(Zk' 1')12, (4) 
k-I 

p" = (1 + 1'2/ M!)-\ M·, 1') = e'hlTf". 

The triangle inequality allows to prove (3) separately 
for each tenn in the sum V. In order to avoid purely 
fonnal complications, we treat a special case only, 
but the argument can be generalized easily. We 
assume Cl = (1, 2), C2 = (3), Cs ••• C .. arbitrary, 
and we estimate the tenn arising from a pair­
interaction V 23 between particles 2 and 3. Then we 
have 

1\V23T(al ... a .. )eiHCTfW 

- J dx dx V 2 IT" fe-P.(U.+al)' II (z )1 2 
- 1 ••• N 23 ILk " k, l' 

k-I 

== N(al ... a .. , 1'). (5) 

Here we have put b" = 0, that is, we have absorbed 
b" in ak' This is possible since 

min;.k la, - b, - ak + b.d ~ co 

for a - co. The integrations over the coordinates not 
belonging to the clusters linked by Vas are trivial, 
they yield a factor 1 if the fk are properly nonnalized. 
Weare left with 

N(al .,. a .. , 7) = J dXI ••• dX3 V~3(X23) 

X If ( )1 2 t.. )te-",(u,+ad,-",(",,+a,), 
I Xu, l' \pIIL2 , (6) 

with Xik = X, - Xk' As integration variables we chose 
Yl, XI2 and X23' Then X3 = YI + aXI2 + X23, a being a 
constant with lal < 1, and the YI integration can be 
carried out: 

N(al .. , a", 7) = const X J dXI2 dX23 V~3(XZ3) 

(7) 

f.L(7) = (2 + 72/M~ + 72/M~)-\ 
Since 11M" 7) W is independent of 7, we conclude that 
(1 + H3)N(al .. , a", 1') is bounded unifonnly in 
al •.. a" and - to < l' < + to. To prove (3), it is 

enough, therefore, to show that 

lim N(al ••• a", 1') = O. (8) 

unifonnly in any finite 7 interval. For this, we split 
the region of integration in (7) into two parts R l , R2 : 

R I : Ixul ::; ! lal - a21 and IX23 I ::; llal - azl, 
R2: IXlzl > t lal - a21 or IXzal > ! lal - azl· 

In RI we have lal - az - aX!2 + xZ31 ~ t lal - a21. 
Using again that 11M" 1') II is 7 independent, we find 
after some obvious steps: 

N(al '" a .. , 7) =:; const X (1 dx(V:s(X) 
"'''>ilo,-o,1 

+ IMx, 1')1 2
) + e-lP(a,-",),). (9) 

According to (4), !Ie', 7) is strongly continuous in 1', 

so that the right-hand side of (9) is continuous in 1', 
and, for any fixed finite 1', converges monotonically 
decreasing to zero for la! - a21 ~ co. By Dini's 
theorem, therefore, the convergence to zero is uni­
fonn in any finite 7 interva1.z This concludes the 
proof of (8) and Theorem 1. 

APPLICATION TO SCATTERING THEORY 

Cluster properties of the S matrix and related 
quantities have been the subjects of recent investi­
gations, mainly within the framework of relativistic 
quantum field theories.3

•
4 In this section, we want 

to start a similar discussion for the nonrelativistic 
case. The reader is assumed to be familiar, to some 
extent, with the concepts of time-dependent scat­
tering theory as developed by Jauch.6 

A channel a of the N -particle system is defined by 
specifying the fragments FI ... F m, and, in addition, 
a bound state for each composite fragment. The 
states in channel a are the states of the fonn 

m 

f = fCYI ..• Ym) II MZk), (10) 
k-I 

where Yk is the position of the center of mass of 
F", 'k(Zk) the bound-state wavefunction in tenns of 
the internal coordinates of Fk (lk = 1 if Fk is a 
single particle), and fCy! ... Ym) an arbitrary square 
integrable function of Yl •.. Ym' The states in chan­
nel a fonn a subspace D ex of X. The channel Hamil­
tonian H" is the full Hamiltonian minus all inter-

2 R. Courant and D. Hilbert, Methoden der Mathematischen 
Physik (Springer-Verlag, Berlin, 1931), Vol. 1, Chap. 2, 
Sec. 2. 

3 E. H. Wichmann and J. H. Crichton, Phys. Rev. 132 
2788 (1963). > 

4 K. Hepp, Helv. Phys. Acta (to be published). 
& J. M. Jauch, Helv. Phys. Acta 31, 661 (1958). 



                                                                                                                                    

8 W. HUNZIKER 

actions between the fragments. The wave operators 

0: = lim eiN'e-iNotEa (11) 

exist as strong limits on X, E« being the projection 
onto D '" They are isometric on D .. and vanish on 
D!. The proof of (11), which is due to Hack/ has 
been the model for our proof of Theorem 1 and is 
implicitly contained in it. To show this, we take 
m == n, CTc = F,., and channel states of the form (1), 
but with Ilo as defined in (10). These states span a 
dense linear set in D a, and, since He = H a, we 
have 

e~n'e-in"-tTI = TI + i { dT6iN~VTe-iNC~I. (12) 

From (7), we have concluded that 

(1 + 1r13
) IIVTe-iNC'fW 

is bounded uniformly in at .•. a", ", and this is all 
we need for the convergence of (12) as t -+ ± <x). To 
prove (11), we can of course take T == 1, but for 
later use we note here that the convergence of (12) 
for t -+ ± 00 is uniform in a1 ... an. 

After these preliminaries, we return to the cluster 
decomposition C1 ••• C ... A channel a is said to be 
consistent with this decomposition, if each of its 
fragments belongs to a definite cluster. The set of all 
consistent channels is denoted by C, it is the same as 
the set of all channels of the system characterized 
by the Hamiltonian He. If a E C, then the channel a: 
reduces to a channel aTe for each one of the subsystems 
C~, the channel Hamiltonians H a, H,,~ and the chan­
nel spaces D", Dak being related by 

and 

0:' = lim e'nite-·no.tE .. ., 
'_:0) 

in the strong sense on the corresponding Hilbert­
spaces. Note that H a. and o~·a commute with 
T(al ... a,,) if a E C. The wave operators have the 
following cluster property: 

Theorem 2. 

lim T(-al ... -a..)0:T(a1 ... a..) 

_ {o;.a = :fI 0:· if a: E C, 
- "-1 

o if a EE C, 
in the strong sense on X. 

eM. N. Hack, Nuovo Cimento 13, 231 (1959). 

(13a) 

(13b) 

Perhaps more appealing to intuition are the con­
sequences for the transition probabilities. Consider 
two channels a, fJ E C, and channel states fa, f~ 
which are direct products of states t "k, til. in the 
subchannels aTc, fJTc,P(I" -+ 113) = I(O~f«, O!fIlW is 
the probability for the transition fa -+ f{S. Theorem 2 
implies immediately 

" 
lim P(Tf" -+ TfIJ) = II P(f". -+ fIJ,,), 
G-Q) i-l 

that is, if we separate the clusters in the initial and 
final state in the same way, then the transition proba­
bility factorizes, the factors being the transition 
probabilities in the subsystems C". On the other 
hand, we have for a E C and for arbitrary fJ, by 
Theorem 2, 

lim PCTf .. -+ f~) = lim I(TO~>«f .. , o!f{S)12 = 0, ....... 
since T(al ... a .. ) -+ 0 for a -+ <X), weakly on X 
[see (14)], and similarly for P(f~ -+ TI a). This means, 
for instance, that if the clusters are separated in the 
initial state, then the probability for the production 
of a fragment containing particles of different clusters 
vanishes asymptotically. 

Proof of (13a). By (11), we have 

lim eiH1e-·no'E .. T(al ..• a .. ) = O:T(al ... a .. ), 
1 ..... *= 

strongly on X, and similarly for o~·aT. But the 
essential point is that the convergence is uniform in 
al ... a .. , as has been noted after (12). It is therefore 
sufficient to show that 

" ..... 

strongly on X, for any fixed finite time t. But this is 
an immediate consequence of Theorem 1. 

Proof of (13b). Part b of Theorem 2 is not related 
to the cluster property of exp (iHt) and will not be 
used in the following. It simply states that, for any 
f E X, TI becomes asymptotically orthogonal to 
D «, in the sense that liE" Ttll -+ 0 for a -+ <x). This 
is a consequence of the following fact: Consider the 
translations (T(a»(x) = f(x + a) on the space .e of 
square integrable functions of one variable. Then, 
in the weak sense on .r}, 

lim T(a) = 0, (14) 

since (0, T(a)f) = f dpe''POP(p)G(p) -+ 0 for a -+ <X) 

by the Riemann Lebesgue lemma; F, G being the 
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Fourier transfonns of I, g. We leave the rest of the 
proof to the reader. 

We prepare the discussion of the S operator by 
proving a lemma which follows from (13a). Let R: 
be the range of 0:, F: the projection onto R:, and 
similarly for n;'" and n:~. The orthogonality 
theorem states that R: ..L R! if a :p6 /3.5 With R"" R; 
we denote the direct sum of all the mutually orthog­
onal subspaces R:, R;''', respectively. 

Lemma 1. 

lim T( -at'" -a,.)F:T(a1 ... a .. ) 

_ {F;'" = ITF: l 
if a E C, 

- 10-1 

o if a EI: C, 

strongly on R;. 
Prool. It is sufficient to prove the lemma for states 

I E R;·II, /3 being any channel in C. We have to 
distinguish two cases: 

Theorem 3. 

lim T( -at' .. -an)S"T(a1 ... a .. ) 

= {ose." = IT sa. if a E C, 
k-l 

if a EI: C, 

in the strong sense on R:. 
Prool· 

(a) a E C: According to Theorem 2, T*n:*T 
converges to 0:""* for a ~ 00, weakly on X. But 
on R:, the convergence is strong, since, for any 
IE R:, lim .. _ .. I\T*O:*T/II = 110:""*/11. (This follows 
from IIT*O:*TIII = \IT*F:T/II, IIn:,'''*/11 = IIF:'''/II 
and Lemma 1.) From this and Theorem 2 we con­
clude that T*S"T = T*O:TT*O:*T has the property 
stated in Theorem 3. 

(b) a EI: C: Then, by Lemma 1, IIn:*T/II = 
IlF:TIII ~ 0 for a ~ 00. 

Theorem 4. 

lim T(-at ... -a .. )ST(al ... an) = Se = fr S", 
(a) a = /3: This is possible only if a E C. Then 10-1 

f = n~.lIg, F~·lIf = f and R(J u~ ~ in the strong sense on _. 

IIT*F:Tf - F;'''/II = 11(1 - F!)Tfli 

= shortest distance between TI and R! 

~ IITn;'~g - n!Tgll ~ 0 for a ~ 00, 

by Theorem 2. 
(b) a:p6 /3: Then the right-hand side of Lemma 1 

vanishes when applied to I, whether a E C or not, 
and 

I IF:Tfl I = 11F:(1 - F!)Tfll 

~ 11(1 - F!)Tfll ~ 0 for a ~ 00, as in Part a. 

By summing formally over all a in Lemma lwe 
obtain 

lim T(-at ... -a .. )F",T(a1 ... a,,) = F;, (15) 

strongly on R;, where F", and F; are the projections 
onto R", and R;. The proof is analogous to the proof 
of Theorem 4. 

Following Jauch, & we introduce partial S operators 
sa and a total S operator S by 

and similarly, for a E C, Se ... , Se, sa., Sk, the last 
being the total S operator of the subsystem C". 

Proof. It is sufficient to prove the theorem for states 
f E R:',II, /3 any channel in C. By Theorem 3, it 
is only necessary to show that 1lT* ~""II S"Tfli ~ 0 
for a ~ 00. But this follows from II~""II S"TIII = 
II~""/I F:Tfll = 1I(L:" .. ~:)(1 - F!)Tfll ~ 
11(1 - F!)Tfll ~ 0 for a ~ 00, by Lemma 1. 

Analogous theorems hold for S"* and S* on R~. 
As an illustration, consider the case of N clusters, 
each one consisting of one single particle. Then 
R; = X, and 

lim TC -a1 ••• -aN)ST(a l ••• aN) = 1, 

in the strong sense on X. Of course it would be nice 
to know that the other limits, like Lemma 1, The­
orems 3 and 4, also hold on the entire Hilbert space 
X. This is in fact asserted by the hypothesis of 
asymptotic completeness, which states that R+ = 
R_ = x. But so far, this hypothesis has been proved 
only for N ~ 3, under somewhat different conditions 
on the potentials.7

•
s If these conditions are satisfied, 

7 Two-particle case: T. Ikebe, Arch. Rat. Mech. Anal. 
5, 1 (1960). 

8 L. D. Faddeev, Mathematical Problems of the Quantum 
Theory of Scattering for a Three-Particle System, Publications 
of the Stoklov Mathematical Institute, No. 69 (1963) (in 
Russian). 
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we can conclude, at least, that R~ = R: = X, if 
none of the clusters consists of more than three 
particles. 

MORE GENERAL POTENTIALS 

For a two-body potential which behaves like 
Ixr' for x ~ co, the requirement of square integra­
bility implies r > l This condition can be weakened. 
In fact, all we have proved so far still holds if we 
include two-body potentials which are locally square 
integrable and fall off faster than the Coulomb 
potential at infinity, in the sense that 

\V(x) I ~ A Ixr', r > 1, for Ixl > p. (16) 

To demonstrate this, let us treat again the example 
(5). We set, for R ~ p, 

VB(x) = {vex) for Ixl ~ R, 

o for Ixl < R, 

and define NIt (a1 '" an, T) in the same way as 
N(al .•• an, T), but with V 23 (X23) replaced by V B(X23). 

The only thing we have to show is that there exists 
an exponent 8 > 1 and, for any E > 0, a sufficiently 
large R such that 

",-'NIt(al ..• an, T) < E, (17) 

for all al ••• an and all T in - CD < T < + CD • Starting 
from (7) and applying the Hoelder inequality to 
the X23 integral, we get 

",-'Nn(al ... an, T) 

~ const X ",312-,(1''' drr2e-"~r,yl"(L" drrH··r/• 

= COnst X ~a/2·-·(L'" dtr-2 •. ) 1/., 

with 1 < p, q < CD, p-l + q-l = 1. Evidently, 
(17) holds if 3/2q - 8 ~ 0 and 2qr > 3, or, since 
8 > 1 but arbitrarily close to 1, if 1 < q < ! and 
q > Jr. These two conditions for q are compatible 
ifr>1. 

The fact that Coulomb potentials are still ex­
cluded is of course not surprising. It has been shown 
by Dollard9 that the case of charged particles can 
be fitted into the formalism of Jauch, if the defini­
tion of convergence for the time limits (11) is modi­
fied. A similar modification might be necessary for 
the spatial limits in the various cluster properties. 

Generalizations analogous to (16) can be expected 
for many-body potentials. 

CONCLUDING REMARKS 

SO far we have not obtained estimates of the rate 
of convergence in the various cluster properties. 
This seems to be possible only if we restrict our­
selves to special states of the system and, in addition, 
impose certain conditions on the behavior of the 
potentials for large separations of the particles. 
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Relation between the Onsager and Pfaffian Methods for Solving the Ising Problem. 
I. The Rectangular Lattice 

C. A. HURST 

University of Adelaide, Adelaide, South Australia 
(Received 28 July 1964) 

An algebraic proof is given showing the equivalence of the Pfaffian and Onsager methods of solution 
of the Ising problem for the two-dimensional rectangular lattice with free edge conditions. With 
cyclic conditions on the rows and columns and with helical edge conditions it is shown how the two 
solutions differ. The relation between the appearance of crossed long-range bonds and the appearance 
of unwanted negative signs in the Pfaffian method is shown explicitly for this particular lattice. 

1. INTRODUCTION 

I T has been rather puzzling that the two methods 
at present known for finding exact solutions for 

the Ising problem, namely the algebraic method of 
Onsager1

-
a and the combinatorial method employing 

Pfaffians,'·5 have exactly the same range of applica­
tion, although they appear so different in approach. 
Problems which yield to one method yield to the 
other, whilst problems which are not tractable by 
one approach also fail to be exactly solved by the 
other, although the reasons for this failure appear to 
have completely different mathematical origins. 
On the one hand, Ising problems which cannot be 
solved by the Pfaffian method are characterized by 
the appearance of crossed bonds which produce un­
wanted negative signs in the combinatorial gener­
ating functions, and such crossed bonds are usually 
manifestations of the topological structure of the 
lattice being investigated, e.g., the three-dimensional 
cubic lattice. On the other hand, the Onsager ap­
proach breaks down because the Lie algebra en­
countered in the process of solution cannot be 
decomposed into sufficiently simple algebras. It is 
usually stated that such more complicated algebras 
occur only when the corresponding lattice has crossed 
bonds,6 although an explicit proof of this fact does 
not appear to be published. 

The usual way in which the. correspondence be­
tween the two methods is established is to interpret 
the partition function of the Ising model as the 

1 L. Onsager, Phys. Rev. 65, 177 (1944). 
2 B. Kaufman, Phys. Rev. 76, 1232 (1949)' B. Kaufman 

and L. Onsager, ibid., p. 1244. Also Y. Nambu, Progr. 
Theoret. Phys. (Kyoto) 5, 1 (1950). 

a T. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. 
Phys. 36, 856 (1964). This paper will be referred to as S. 

'C. A. Hurst and H. S. Green, J. Chem. Phys. 33, 1059 
(1960). 

6 P. W. Kasteleyn, J. Math. Phys. 4, 287 (1963). 
S For a simple account of the relation between Onsager's 

method and the reduction of Lie algebras, see the review 
article by: G. F. Newell and E. W. Montroll, Rev. Mod. Phys. 
25,353 (1953). 

generating function for the number of closed poly­
gons drawn on a.lattice, using the algebraic trans­
formation due to OguchV and then to write down 
another formula which produces the same generating 
function. The fact that these two different formulas 
lead to the same answer can be established geo­
metrically by inspection, or algebraically by an 
induction argument which is essentially a formal 
statement of the geometrical relationship.s Also the 
fact that both Onsager's method and the Pfaffian 
method lead to the same expressions for the parti­
tion function and the correlation functions is a 
confirmation of one's belief in the identity of the two 
methods. 

But at present a detailed correspondence between 
the two is lacking. It is difficult to see why the two 
methods have exactly the same limitations, and 
why it is that although the Pfaffian method always 
permits some answer to be written down it is only in 
special circumstances that it is the right answer. 
This is in contrast with the Onsager method which 
either permits the correct answer to be obtained or 
cannot be treated at all, except by approximate 
methods. Apparently the Pfaffian method insists 
on dealing with simple expressions even when they 
are no longer relevant for an exact approach. 

It is the purpose of this and subsequent papers 
to discuss this question, and to show how the Pfaffian 
method can be put in detailed correspondence with 
the Onsager method. It will be shown that in those 
cases where the Onsager and Pfaffian methods apply 
they are both concerned with the solution of a 
linear problem whereas when they can no longer be 
carried through it is because the Onsager method 
becomes faced with a nonlinear problem for which 
no exact treatment is available, whilst the Pfaffian 

7 T. Oguchi, J. Phys. Soc. Japan 6, 27 (1951). 
8 H. S. Green and C. A. Hurst, Order-Disorder Phenomena 

(Interscience Publishers, Inc., New York, 1964), Chap. 8, 
p.347. 
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method, rather perversely, concerns itself with a 
linear problem which is no longer the correct one. 
So this is why the Pfaffian method can always be 
pushed through to a final closed expression (for 
asymptotically large lattices) but only in the soluble 
cases has this expression any useful meaning. 

In this paper the special, but fundamental, case 
of the two-dimensional rectangular lattice will be 
treated in detail. In Sec. 2 the case of free-edge 
conditions will be discussed, and in Sec. 3 the vari­
ous complications associated with toroidal and heli­
cal boundary conditions will be resolved. 

2. THE RECTANGULAR TWO-DIMENSIONAL 
LATTICE WITH FREE EDGE CONDITIONS 

For a rectangular lattice with n rows and m 
columns and N = mn sites, the Ising problem is the 
problem of evaluating the partition function: 

Z = tr tr ... tr exp {-E(O'I, •.. ,00N)/kTj, 
"1 if, 

where 

E(O'l' 
N N-m 

(1) 

N-m 

+ XUjUO'j) II (1 + YO'j+ .. O'j) 
j-l 

(5) 

where x = tanh K, Y = tanh K', K = J /kT, K' = 
J' / kT, and the notation II' has the same significance 
as the notation E' in Eq. (2), i.e., the terms UjUO'j 

are omitted when j = rm. 
The relation between Eq. (5) and a combinatorial 

problem is well known. An alternative expression 
which is equal to Eq. (5) is given by 

ZI = 2-N tr ... tr tr ... tr 
•• (1) tiNCt) cT, (.) tlN(.) 

N 

X II" (1 + (2) (1) + (1) (1) + (2) (1) 
Uj- mO'j-l XUj O'j-l YUj O'j-l 

i-I 

+ XU}ll U}:>m + YU}2) U}:>m + XyO'}2) 0'}1l 

+ xyu~2)U~llU~:>mU~:>1)' (6) 

= -J E' O'jHUj - J' E Uj+mUj. 
j-l j-l 

Here J and J' are the energies of interaction between 
neighboring lattice sites in the horizontal and 
vertical directions respectively, and 0' j is a 2N -di­
mensional matrix which can be written as a direct 
product 

where the notation II" denotes the appropriate 
incorporation of the edge conditions. These condi­
tions here are the following' all terms containing 
0'~1~ are omitted for r = 0, 1, ... , n, as also are all 
terms containing U}2) for j > N - m or j < 0. 

(2) The matrices 0':1), U!2) are a set of 22N -dimensional 
matrices with the properties: 

0', = 12 X 12 X ... X 0' X 12 X .,. X 12 , 

where 

(3) 

for i ~ i' or j ~ j', 

and 

(7) 

The equivalence of Eqs. (5) and (6) can be seen by 
inspecting the structure of the terms which survive 
on taking the trace. In both cases one has a sum of 
terms which arise from casting out all terms which 
contain an odd power of any 0' matrix, and each 
such term can then be made to correspond to a 
closed polygon (or a set of closed polygons) drawn 
on the lattice. However for our purposes we will 
show the correspondence algebraically. It can be 
shown, by multiplying out and using Eq. (7) that 

(1 + u!:>",0'!:>1 + xu~ll U~:>1 + yu?) 0'~:>1 + xu!1) O'!:> .. 

+ YU!2)U}:> ... + xyu~2)U}1) + xyO'?)u:1)O'~:>"'O'::>l) 

and 0' appears in the jth place. The choice of free 
edge conditions manifests itself in the occurrence 
of the upper limit of summation, N - m, in the 
second term on the right-hand side of Eq. (2), and 
in the notation E' for the first term. This latter 
notation means that when j = rm for r = 1, .. , , n 
the term O'j+1Uj is omitted. The notation tr'l means 
that we are to take the trace over those indices cor­
responding to the jth place in the direct product (3). = (1 + 0'::>mu~:>1)(1 + XO'~1)u~:>1)(1 + YO'?)U:~'>l)' (8) 

Edge conditions make obvious modifications to 
(4) Eq. (8). 

The matrices Uj have the algebraic properties 

O'jO'j' - O'j,Uj == [O'j. uj'J- = 0, 

u~ = 12N. 

j ~ j', 

The Oguchi transformation replaces Eq. (1) by 
N 

Z = (cosh K)N-,,(cosh K,)N-", tr ..• tr IT' (1 
~l ~N i-I 

Because the matrices u~t,! do not appear in Z1, 
the trace operation over the indices corresponding 
to them is trivial and gives a factor 2". The factor 
HI + ul:>",U}:>l) has the property of a 0 symbol, for 
it is zero when 0'):>", and o}~~ have opposite signs 
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and is one when they have the same sign. So if this 
factor appears in Zl it may simply be dropped and 
in the remaining expression wherever O'~~ .. appears 
it can be replaced O'/~!. A formal proof of this state­
ment will be given, for an analogue will be needed 
later. Equation (6) may be written in the form 

Zl tr tr!(1 + O':~mO'::>l) 
'I_.h) ffl-l <d 

X (A + BO'~:>l + CO'}~m + DO'}:>lO'~~m), (9) 

where A, B, C, D are expressions independent of 
0' j~! and O'~~ ... Hence ZI is given by 

This is just the expression we get when we replace 
O':~ ... by O'j~~ throughout before taking the trace over 
O'l~ .... So the factor HI + O'l~ .. O'j~D may be dropped 
from Eq. (8) for all j, and then Eq. (6) becomes 

N 

Zl = 2-.. +1 tr 
I11(t) 

. .. tr II" (1 + xO'l1) O'l:>l) 
"'N(l) i-I 

X (1 + yO'l!! ... -lO'l:>l)' (6') 

(A number of minor modifications due to edge condi­
tions will be discussed later.) This is the same as the 
Oguchi expression (5) if we make the correspondence 

O'l1) -+ O'j+l' (10) 

The first step in setting up the Pfaffian method is 
to regard the matrices O'~i) appearing in Eq. (6) as 
anticommuting rather than commuting quantities, 
so that the multiplication relations (7) are replaced 
by 

= [O'l'), O'}:')]+ =28",8;;,. (11) 

Once again these matrices may be represented as 
22N -dimensional matrices which are direct products 
of 2N two-dimensional matrices. The order of the 
factors in (6) is to be taken in the order of increasing 
j reading from right to left. It has been shown9 that 
this change does not alter the value of Z. Further­
more, this change does not affect the factorization 
described in Eq. (8) if the order of factors is the 
same as given there. An important feature of the 
factorization given in Eq. (8) is that no term con­
taining O'l~", nor O'j~~ occurs to the left of the factor 
(1 + O'l~",O'j~D appearing in Eq. (6). Hence we can 

• See Ref. 8, especially ~!~E;J 4. In this reference, instead 
of matrices IT/'), a pair of a .. ation and creation operators 
al'), a/')· are used, but the replacement 

lTi(i) -> a/')·, lTi_1(1) -> ai_1C1l , ITI_(2) -+ ai_(2) 

in thejth term ofEq. (6) of this paper will give the appropriate 
transcription. 

write Eq. (6) once again in the form (9) with the 
correct order of the factors O'j~~ and O'~~ .... A, B, C, 
and D again do not depend on these two matrices. 
Taking the trace of O'l~", we find that 

ZI = tr (A + BO'}:>1 - CO'l:>1 + D). (9") 
.'_1(1) 

Equation (9") differs from Eq. (9) in the sign 
before the coefficient C, but this difference is in­
essential because after taking the trace over O'j~~, 
the terms in Band C will disappear. So once again 
we find that ZI is given by Eq. (6') even for anticom­
muting matrices. This expression (6') is very remi­
niscent of that encountered in the Onsager treatment 
particularly when the form of proof utilized by 
Kaufman or Nambu2 is followed. However, in 
Onsager's method the matrices are only of dimension 
2'" rather than 2N (the operation of taking traces of all 
the relevant matrices 0':2) and redundant indices 
0'~1~ has lowered the order from 22N to 2N). In order 
to complete the correspondence between the two 
methods, the procedure of Schultz, Mattis, and Lieb3 

of constructing partial density matrices with an 
associated transfer matrix will be followed. This 
important paper has done much to simplify and 
clarify the esoteric algebraic manipulations involved 
in the original presentation of the Onsager method. 

We define a partial density matrix 

P M(O'M+l, .,. , O'N) 
M 

= tr ... tr II" (1 + xO'i+10'j)(1 + YO'i+",O'j), (12) 
crt (TM i-I 

Po = I, 
and then 

Because of the structure of the bond connections, 
PM can only depend on the matrices O'M+l, ..• ,O'M+ .. , 
and if M = rm + k with 0 ~ r < n, 1 ~ k ~ m, we 
will denote the matrices O'M+1, ..• , O'M+ .. +1 by 
0':+1' 0':+2, •.. , 0':" 0'1, ... , O'k-l, O'k, O'HI. SO if we 
write 

PM = AM + BMO'~+1' 
where AM, BM depend on the matrices 0'~+2' ... ,O'k, 
and are of even, odd, degree in these matrices re­
spectively, then we have 

p 11+1 = tr [(1 + XO'~+20'~+1 + YO'HIO'~+1 
U'.c+l 

- xYO':+20'Hl)(AM + BIIO'~+1)] 
== 2(1 - xYO':+2O'Hl)Ay - 2(XO':+2 + YO'Hl)BM • (14) 
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The negative sign comes from the anticommuta­
tion properties of 0'~+1. Because the structure of 
these expressions is such that we need never consider 
more than m O"s at a time, we may restrict ourselves 
to a representation with 2m -dimensional matrices. 
This representation can be written, with some re­
semblance to Eq. (3), in the form 

O'j, = TXT X '" T X 0' X 8 X ... X 8, 

m terms (1::; k ::; m) (15) 

where now we put, in contrast to Eq. (3), 

and the matrix 0' appears in the jth place. In follow­
ing through this process of reduction it is not strictly 
necessary to relate P M+1 to PM' Instead one can 
relate P M+m to PM, i.e., work along a column instead 
of a row. 

Following S, Eq. (14) can be written as 

PM+1 = 2[(1 - xYO'H20'Hl)(1 - NH1) 

+ (XO'H20'HI + yNk+1)]P M' (17) 

NHI is an operator which counts the number of 
times O'HI appears in PM' As pointed out in S there 
is actually no operator which has these desired 
properties except when applied to a particular state. 
The particular state can be chosen to be the "vacuum 
state" 10) representing a 2m-rowed column matrix 
with all the spins upwards, i.e., 

Tj 10) = 10), j = 1, ... ,m, 
where T i = 8 X 8 X ... X 8 X T X 8 X 
If we define a third anticommuting matrix 

Pi = T X '" X T X P X 8 X ... X 8, 

with 

P = (~ -~) 
in the jth place, then the operator 

Nj = t(l + iO'jpj) = t(l - Tj) 

has the properties 

(1 - Nj ) 10) = 10), 

NjO'i 10) = O'i(l - Nj) 10) = O'j 10), 

(18) 

X 8. 

Ni 10) =0. (19) 

Under these circumstances the operator NHI has 
the required properties and we can replace Eq. 
(17) by 

P M+l 10) = [(1 - xYO'H20'Hl)(1 - iO'HIPHl) 

+ (XO'H20'k+l + y)(1 + iO'HIPHl)]P M 10) 

= [(1 + y) - i(1 - Y)O'HIPk+l](1 + iXO'H2Pk+l)P M 10) 

(2 sinh 2K')' e-,KoaH'PH'e,KaH'PH'p 10) (20) 
cosh K cosh K' M , 

where e-2K
' = tanh K*. 

Edge conditions make the following modifications: 
(i) For M + 1 = rm there is no horizontal bond 

to the right, and we put x = K = 0; (ii) For 
1 ::::; M ::::; m, there are no vertical bonds leading 
downwards, so, in the calculations leading to (6'), 
factors like (1 + O'j:>mO'j~D are missing from the first 
m terms. The typical vertex factor in this case is 
(1 + xO'?)O'j~~ + YO'?)O'j~~ + xyO'j2)0'~1) which fac­
torizes to (l+xO'}I)O'j~D(1+yO'}2)O'i~D, and with the 
correspondence (10) this is (1 +xO'j+1O'j)(1 +YO'j+mO'i) 
as before; (iii) For M = rm + 1, there are no hori­
zontal bonds to the left so the expression (5) be­
comes (1 + XO'~!!+lO'~~~1)m+1) (1 + YO'~~+1O'~~~1)"'+l) and 
instead of taking the trace over 0'~~+1 we make the 
replacement O'~~+l -t O'(r+1)m+l; (iv) For N - m < 
M ::; N, there are no vertical bonds leading up­
wards, and we simply put Y = 0; (v) For M = 1, 
the only factor is (1 + xyO'~2)0'~1» so we make the 
replacements 0'~2) -t O'm+1, 0'~1) -t 0'2 and then write 
2(1 + XYO'm+l0'2) as 

using the results 

(1 - iO'IPl) 10) = 2 10), 

From the relation 

ZI = 2m (01 PN 10), 

we find, when all edge effects are properly in­
corporated: 

m-l 

Z = (~inh 2K,),(N-m) (01 II e,Kal+'P1V"-1 10), (21) 
;=1 

where 
'In ",-1 

V = II e-,KOalPl IT e'Kaj+'PI. (22) 
i-I i-I 

The expressions (21) and (22) form the starting 
point for the treatment of the Ising problem by 
Kaufman using spinor algebraic methods. So we 
have established a direct algebraic connection be­
tween thePfaffian method which starts from Eq. (6) 
and the Onsager method which starts from Eq. (1). 

The connection between Eq. (21) and the combina­
torial approach can be seen by expanding Eq. (22) 
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as a polynomial in x and y. A term iXUj+IPj cor- Zl 
responds to a horizontal bond joining the jth and 

tr tr !(A' + B'u~~~l)",) 
"(r-l)m+l(S) 0"(.,.+1)".(1) 

(j + l)th columns, with the row designated by the 
particular V in which it occurs. The term (1 - iUjpj) 
corresponds to a vertical bond in the jth column 
and the row again is designated by the particular 
V in which it occurs. 

Because of the identity of Eqs. (1) and (6) only 
one determinant is required in the Pfaffian approach 
to give the correct expression for the partition 
function. This equality is a consequence of the 
simple free edge conditions. In the next section it 
will be shown how considerably greater complication 
arises if either toroidal or helical boundary condi­
tions are employed. 

3. TOROIDAL AND HELICAL EDGE CONDITIONS 

The most commonly used edge conditions are the 
toroidal and helical conditions. For toroidal condi­
tions they are define by replacing Eq. (2) by; 

E(UI' ... , UN) 

X (1 + U~~~l)"'+lU~~~l)",)(A + BU~~~l)" 
+ CU~~~l)"'+l + DU~~~l)",U~~~l)m+l) 

tr (A' + B'U~~~l)",) 
tT{r+l)m(l) 

X [(A + D) + (B - C)U~~~l)".J, (25) 

and the term B'C appears with the wrong sign. This 
fact can be expressed in another way by saying 
that we may replace U~~~l)"'+l by U~~~l)", everywhere 
so long as we take care to note that uG~~1) ... )2 = 1 
except when one factor comes from the lattice 
point j = (r + I)m and the other from the lattice 
point j = (r - l)m + 1, and in that case (ul~~l).,Y = 
-1. In graphical language, the exceptional situation 
arises when a bond joins (r + I)m and rm + 1, and 
another bond joins (r - l)m + 1 and rm + 1. At 
all other points in a row there is no difficulty, and 
we may carry out on them the reductions leading 
to Eq. (20), to find 

N N 

= -J 2:' Uj+IUj - J' 2: Uj+",Uj, (23) P(r+l)",(Ul,'" u ... ) 10) 
;*",1 i-I 

with Ui+m == Ui+",-N for N - m < j S N, and E' 
here means that when j = rm we replace UrmUrm+l 
by Ur ... U(r-l) ... +l. 

For helical boundary conditions we replace (2) by 

E(Ul' ... , UN) 
N N 

= -J 2: Uj+1Uj - J' 2: Uj+ ... Uj, (24) 
i-I i-I 

with UN+l == Ul' 
Toroidal conditions may be modified by allowing 

the second summation in Eq. (23) to run only up 
to N - m, so that we have a lattice wrapped on a 
cylinder and not on a torus. For the Onsager method 
this has been treated by S. 

(i) Cyclic End Conditions on Rows Only: 
Cylindrical Edge Conditions 

We will consider first of all the case just mentioned, 
i.e., cyclic end conditions on the rows but not on the 
columns. The considerations of Sec. 2 can be carried 
through up to the derivation of Eq. (9"). The argu­
ment subsequent to that equation which permits 
the dropping of the terms linear in Uj~~ is no longer 
correct without qualification. For if j = rm + 1, 
we must replace u<;~ by U~~~l) ... and such a term also 
occurs associated with the vertex j = (r + I)m. 
Hence Eq. (9) for this value of j will have the struc­
ture 

= tr [(1 + y) - i(1 - y)um P".J(1 + ixu{p",) 
v,' 

",-1 

X IT [(1 + y) - i(I - y)ujpj](1 + iXU;+lpj) 
;-2 

X (1 + xU2uD(1 + YUluDPr",(u{, U2, .•. , U"') 10), 

= tr (1 + ixu{p",)(1 + xU2uD 
v, ' 

(26) 

where A, B are independent of UI, uf, and the excep­
tional condition referred to above is interpreted as 
saying that the term ixufp",Bu{ must be replaced 
by -ixu{p",Bu{. Evaluation of this trace then gives 
for P (r+1)",IO)' 

[(1 + y) - i(I - y)uIP1](I + iXU2Pl) 

X (1 - iXU1P ... )(A + B(1) 10). (27) 

Now we define the matrix 

(28) 

where Tj is defined by Eq. (18). This matrix has the 
property that it counts as + 1 if the total number 
of u's in A + BUI is even, and as -1 if they are odd. 
So we can make the replacement 

(1 - iXUIP",) ~ (1 - iXU1P",U) = (1 + ixuIUp",), 

because both A and BUI have an even number of u's. 
Then 
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P('+llm 10) = VP ... 10), 

with 
m .. 

V = II e-;K·~IPI II e;K~i+'PI, (29) 
i-I 1-1 

with U .. +l == 0'1 U. This is the result obtained in the 
standard treatments of the Onsager approach, so 
once again the equivalence of the two methods has 
been demonstrated. It is interesting to notice that 
the Pfaffian method leads to the combination UIP ... 
which is quadratic in the anti commuting quantities, 
whereas the Onsager method leads to the combina­
tion 0'10'", == 0'1 UP ... which is of degree m in the anti­
commuting quantities. Following S we will call O'IP ... 
a linear term in analogy with the correspondence 
between linear equations and quadratic Hamiltonian 
forms in mechanics. Similarly 0'1 U Pm will be called a 
nonlinear term. So for this problem it is possible 
to replace the correct nonlinear term by the in­
correct term because of the properties of the U 
matrix. The U matrix can be regarded as counting 
the number of crossing points of the long-range bond 
joining rm + 1 and (r + I)m with the vertical 
bonds coming from the row (r - 1). As the number 
of such crossing points is even the Pfaffian method 
gives the correct sign. If the number of crossing 
points were odd then the Pfaffian method would give 
the wrong sign, and it would not be possible to 
linearize the Onsager approach in this way. In 
toroidal boundary conditions just this situation 
arises. 

(ii) Cyclic Conditions on Columns Only 

The typical term in the first row is now 

(1 + 0'~2m+;u~:>I)(1 + xu~ll u~:>I)(1 + yO'~2) 0'~:>1)' 
whilst on the last row it is 

(1 + 0'~22m+;uJi2"+i_l)(I + XO';"~m+;u;;2"'+;-I) 
X (1 + yO'~2"'+i0';,,12m+i-l)' 

with 1 < j ~ m. For j = 1 the terms are 

(1 + xO'?)0';,,22m+1)(I + yO':2)0';"22 ... +l) 

and 

(1 + (1) (2) )(1 + (2) (2) ) XUN-m+1UN-2m+l YO'N-m+1UN-2m+l , 

respectively. 
Now ZI can be written as 

ZI = tr A(I + 0'j,,22m+;u~:>I)(1 + XU~l) O'~~\) 
X (1 + yO'~2) u):>I)B, 

where A does not depend on 0' i~~ and B does not de-

pend on u;"'!. .. +i and they contain even-order products 
of matrices only. Hence, 

ZI = tr [A(l + xu~ll O'~:>I)(I + yu~2) O'~:>I)B] 
- tr [O'):>IA(I + xul ll O'l:>l) 

X (1 + (2) (l)B (2) ] yUj O"j_1 UN-fA+i, 

= tr [A(I + xu)ll 0'):>1)(1 + yO"~2) O'~:>I)B] 
+ tr (uj,,22 ... +;A(1 + xUll)U~:>I) 
X (1 + yO"~2) O"l:>I)BO'l:>I]' (30) 

using the properties of the trace and the anticom­
mutativity of O"j~~ and U~2"+i' 

When this process is repeated with another index 
j', 1 < j < j' ~ m, Eq. (30) becomes 

tr A + tr O"~2"'+iAO'l:>1 + tr 0'j"22,,,+j,AO'~~~1 

+ tr U;"~m+jO'~2"+i,Au~~~IO'l:>I' 
where now we put 

A A '(I + (1) (1) )(1 + (2) (ll )B' = XO'j' Uj'-1 YO"/, 0'1'-1 

X (1 + xu~ll O'~~\)(I + yO'~2) O'~:>I)C' 
and A', B', C' do not depend on O"/~L U~~~h 0'~2"'+i' 
and O"~2m+i' and are of even order in the remaining 
matrices. This process can be repeated for all the 
lattice points in the first row. For the first point a 
slightly modified procedure is necessary. 

We introduce a new matrix 0'1, O'~ = 1, anticom­
muting with all other matrices and we write this 
first factor as 

(1 + xyO"~2) O'~ll) + (XO'~ll + yO"~2»O"~0'~2"'+1I 
and then 

ZI = tr (A(1 + xyu~2)0'~1»] 
+ tr (O"~2"+IA(xu~1l0'1 + yu~2)O"I)ud. (31) 

Now when we take the trace over all the matrices 
0'(2) except those in the first column and the last 
row, we can replace O'~~ .. and u;~l by O"j in the usual 
way, and we also put U(.+I)m+l for u!~+l for 1 ~ r < n. 
We then carry out the same procedure as described 
in Sec. 2. After we have taken the trace over the 
matrices O'N-m+j, the only surviving ones are the 
set uj,,22m+ j and following the standard procedure 
these can now be renamed O"j. So finally we obtain 
the expression 

Z = (2 sinh 2K')lN[ (01 V" 10) + t.t (01 O'j V"O'; 10) 

+ ~ (01 O'jO"j' V"O'j'O'j 10) + '" ] ' 
l~i<j'~tn. 

(32) 
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where V is the matrix defined in Eq. (22). A term 
such as tr (0" j V" 0" I) may be represented graphically 
by a set of closed polygons drawn on the lattice 
with the exception of the jth column where there is 
a pair of bonds, called external bonds, leading up­
wards from the last row and downwards from the 
first row, and such a pair of bonds can be interpreted. 
as a long-range bond joining the first and last row, 
and so closing the corresponding polygon to which 
they are connected. Because 

(2 sinh 2K')''''(01 e-iK*ml = (2 cosh K')"'(OI 

the first term of Eq. (32) describes the Ising problem 
with free edge conditions. A complete set of states 
is given by 

fTj.O"j._ •••• O"j.O"j, 10) with i1 < i2 < ... < i., 
o ~ q ~ m, 

so that Eq. (32) is nothing but 

Z = (2 sinh 2K,)iN tr V", (32') 

the usual Onsager expression. The fact that Eqs. (32) 
and (32') are the same can be interpreted graphically 
by noting that, with the long-range vertical bonds 
introduced here and the free edge conditions on the 
rows, there can only be an even number of crossing 
points and so there can be no unwanted negative 
signs. 

(iii) Cyclic Conditions on Rows and Columns: 
Toroidal Edge Conditions 

If there are cyclic conditions on the ends of the 
rows then the discussion of Subsection (i) shows that 
the matrix U must be introduced to relate the two 
methods. It is necessary that only the eigenvalue 
U = + 1 occurs and this is equivalent to the require­
ment that the 0" matrices in P rm, for all r < n, occur 
in even-order products only. Now because of the 
appearance of additional 0" matrices in the initial 
states 0";, •.• 0";. 10) this matrix U will only have 
the correct eigenvalue if the initial state has an 
even number of O"'S. Otherwise the sign will be in­
correct. But this is just the condition for an even 
number of intersections of the long-range vertical 
and horizontal bonds, and so, in order for the 
Pfaffian method to give the correct result, a prescrip­
tion such as given by Potts and Ward10 must be 
used. This prescription can be verified algebraically 
by comparing the two expressions. 

10 R. B. Potts and J. C. Ward, Progr. Theoret. Phys. (Kyoto) 
13, 38 (1955). 

. ~. ? 
I . . . 

(0) (b) 

(c) (d) 

FIG. 1. Relation between long-range bonda and crossing 
points for helical edge conditions. (a) Long-range vertical 
bond and helical row connection. (b) Short-range vertical 
bond and helical row connection. (c) LOng-range vertical bond 
and long-range helical row connection. (d) Short-range vertical 
bonds and long-range helical row connections. 

(iv) Helical Edge Conditions 

With helical edge conditions the partition function 
has the structure 

Z = tr (1 + 0"~2mO"~21)(1 + XO"~' 0"1121)(1 + YO"~) 0"~21)A 
X (1 + (2) (1»)(1 + (1) 0»(1 + (2) (1» O"N-m+lO"N XO"I O"N YO"I O"N , 

where A does not contain O"~) and is even order in 
all the matrices. Hence we can write as before 

Z = tr (1 + 0"~~mO"~21)(1 + xO"~) 0"~21)(1 + YO"~) 0"~21) A 

X (1 + xO"~1) 0"~»(1 + yO"~2) O"~» 
+ tr [0"~2m+1(1 + O"ii2mO"~21) 
X (1 - XO"~' 0"~21)(1 + YO"~) O"~~I)A 
X (1 + xO"l1) O"~l)(1 + yO"~2) O"~l)O"~)]. (33) 

Now the trace over all 0"(2) matrices except those in 
the last row can be taken and then the procedure 
used in Subsection (iv) followed, after making the 
correspondences 0" /~~ ~ 0" II O"~) ~ 0"1' The latter 
correspondence may not appear to be justified be­
cause 0"11) appears at both ends of the product 
inside the trace. However, by using the properties 
of the trace, this difficulty can be overcome, although 
the details are tedious. It is found that instead of 
Eq. (32/) we have 

Z = (2 sinh 2K,)lN tr VV,"-I, (34) 

where V is as defined in Eq. (29) and V' is obtained 
from V by replacing K by - K for 8 = m. So helical 
boundary conditions differ from toroidal boundary 
conditions in that long-range vertical bonds now 
give the correct sign, indicating no crossing points, 
whereas short-range vertical bonds give the in­
correct sign when there is a long-range horizontal 



                                                                                                                                    

18 C. A. HURST 

bond connecting the lattice point rm to rm + 1. 
This is illustrated in Figs. 1(80) and 1(b). A bond 
connecting j = 1 to j = N gives the incorrect sign 
when a long-range vertical bond is present, and the 
correct sign when long-range vertical bonds are 
absent. This is because of the factor (1 - xuii) uii2 1) 

in the second term of Eq. (33). Figures 1 (c) and led) 
illustrate these two cases. 

4. CONCLUSION 

In this paper it has been shown algebraically how 
the Pfaffian method corresponds with the Onsager 
method for the rectangular two-dimensional lattice. 
In all cases in which the two methods do not exactly 
correspond it has been shown how the failure of the 
Pfaffian method is due to the appearance of crossed 
bonds, and that the nonlinearity associated with 
long-range bonds does not prevent a solution so long 
as there are no crossing points. In other words the 
correct nonlinear Onsager formulas can be replaced 
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by the linear Pfaffian formulas without altering 
the expression for the partition function so long as 
the matrix U takes only its eigenvalue + 1 and this 
will be so if there are no crossed bonds. 

In later publications it is hoped to show that this 
is a general feature of the correspondence between 
the two methods, and in this way to understand 
better the limitations of the Pfaffian method. Once 
these limitations are understood the possibilities of 
the Pfaffian method as the basis for a solution by 
successive approximations will be clearer. 
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Using general coupling operators the configuration interaction method is reformulated. The new 
formulation proves that the configuration interaction procedure leads to self-consistent results for 
the set of configurations chosen and makes it possible to include a self-consistent contribution of the 
continuum in practical calculations. 

INTRODUCTION 

T HE practical impossibility of solving analyt­
ically the electronic SchrOdinger equation has 

imposed the use of approximate methods. The varia­
tional procedure, within the self-consistent field 
(SCF) formalism, and using wavefunctions ap­
proximated by antisymmetrized products of one­
electron functions, has provided the best way of 
tackling the problem in actual applications. 1 Un­
fortunately the approximation used for the functions 
(with omission of interelectron-distance terms) 
detennines that the lowest energy attainable will be 

1 See, e.g., F. W. Birss and S. Fraga, J. Chem. Phys. 38/ 
2552 (1963): SCF treatment for lowest states. S. Fraga and 
F. W. Birss, ibid. 40,3207 (1964): SCF treatment for excited 
states. Pertinent references can be found in both papers. 

the Hartree-Fock energy for the Hamiltonian used. 
Configuration interaction (Cl) using SCF wavefunc­
tions (or virtual SCF functions) leads to lower 
energies but the improvement is restricted by the 
size of the basis set of interacting configurations 
chosen. To date it has not been possible to overcome 
this restriction as the continuum contribution has 
systematically been omitted. 

The method developed here permits one to carry 
out a close-to-exact, close-to-complete,2 self-con­
sistent, direct configuration interaction treatment, 
with the basis set of interacting configurations being 
improved self-consistently towards a close-to-exact 

• The term "complete" is used throughout this paper to 
denote a treatment using a complete basis set of configurations. 
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bond connecting the lattice point rm to rm + 1. 
This is illustrated in Figs. 1(80) and 1(b). A bond 
connecting j = 1 to j = N gives the incorrect sign 
when a long-range vertical bond is present, and the 
correct sign when long-range vertical bonds are 
absent. This is because of the factor (1 - xuii) uii2 1) 

in the second term of Eq. (33). Figures 1 (c) and led) 
illustrate these two cases. 

4. CONCLUSION 

In this paper it has been shown algebraically how 
the Pfaffian method corresponds with the Onsager 
method for the rectangular two-dimensional lattice. 
In all cases in which the two methods do not exactly 
correspond it has been shown how the failure of the 
Pfaffian method is due to the appearance of crossed 
bonds, and that the nonlinearity associated with 
long-range bonds does not prevent a solution so long 
as there are no crossing points. In other words the 
correct nonlinear Onsager formulas can be replaced 
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by the linear Pfaffian formulas without altering 
the expression for the partition function so long as 
the matrix U takes only its eigenvalue + 1 and this 
will be so if there are no crossed bonds. 

In later publications it is hoped to show that this 
is a general feature of the correspondence between 
the two methods, and in this way to understand 
better the limitations of the Pfaffian method. Once 
these limitations are understood the possibilities of 
the Pfaffian method as the basis for a solution by 
successive approximations will be clearer. 
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Using general coupling operators the configuration interaction method is reformulated. The new 
formulation proves that the configuration interaction procedure leads to self-consistent results for 
the set of configurations chosen and makes it possible to include a self-consistent contribution of the 
continuum in practical calculations. 

INTRODUCTION 

T HE practical impossibility of solving analyt­
ically the electronic SchrOdinger equation has 

imposed the use of approximate methods. The varia­
tional procedure, within the self-consistent field 
(SCF) formalism, and using wavefunctions ap­
proximated by antisymmetrized products of one­
electron functions, has provided the best way of 
tackling the problem in actual applications. 1 Un­
fortunately the approximation used for the functions 
(with omission of interelectron-distance terms) 
detennines that the lowest energy attainable will be 

1 See, e.g., F. W. Birss and S. Fraga, J. Chem. Phys. 38/ 
2552 (1963): SCF treatment for lowest states. S. Fraga and 
F. W. Birss, ibid. 40,3207 (1964): SCF treatment for excited 
states. Pertinent references can be found in both papers. 

the Hartree-Fock energy for the Hamiltonian used. 
Configuration interaction (Cl) using SCF wavefunc­
tions (or virtual SCF functions) leads to lower 
energies but the improvement is restricted by the 
size of the basis set of interacting configurations 
chosen. To date it has not been possible to overcome 
this restriction as the continuum contribution has 
systematically been omitted. 

The method developed here permits one to carry 
out a close-to-exact, close-to-complete,2 self-con­
sistent, direct configuration interaction treatment, 
with the basis set of interacting configurations being 
improved self-consistently towards a close-to-exact 

• The term "complete" is used throughout this paper to 
denote a treatment using a complete basis set of configurations. 
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lowest state. A general discussion for exact solutions mate functions. One might write3 
•• 

is also given. 

THEORETICAL DEVELOPMENT 

The time- and spin-independent, electronic Hamil­
tonian for an N -electron system is defined by 

:JC = H + R, 

with 

H = LHp , 

R = ! L L (1/rp.), 
p -rp6.p 

where the summations are taken over all electrons 
p, T. H p is the one-electron operator formed by kinetic 
and nuclear potential components; rp. is the distance 
between electrons p and T. 

The corresponding SchrOdinger equation may be 
written as 

where rp~(E) is an approximate eigenfunction of the 
continuum for the problem under consideration, 
with the members of a degenerate group labeled by 
the sUbscript V; E is the energy of the ground state 
of the singly-charged, positive ion. This expansion 
will only be exact if the functions rp/;., rp'! (E) form a 
complete set of class D functions. One cannot know 
a priori whether such functions form or not a com­
plete set, but it is clear that they are not class D 
functions with respect to the Hamiltonian under 
consideration; if they were, the problem would 
already be solved. 

This difficulty can be overcome in the following 
way. The set of exact functions "iJ! I~' "iJ!~ (E) is a 
complete set of class D eigenfunctions for the N­
electron problem. The approximate functions rpA~ 
(as we have mentioned above) are not class D eigen­

(1) functions, but it is completely legitimate (see the 
where the subscript a distinguishes the degenerate Appendix for a justification) to write 
eigenfunctions belonging to the same eigenvalue E~; 
the superscript N stands for the number of electrons. 

The CI treatments reduce, essentially, to the 
selection of a basis set of interacting configurations, 
the expansion of the wavefunctions "iJ!t; in terms of 
these basis functions, the evaluation of the matrix :JC 
in terms of these functions, and the solution of the 
matrix equation 

(2) 

where the column vector Ck~ is formed by the ex­
pansion coefficients of "iJ!k~ and S represents the 
total overlap matrix defined in terms of the basis 
functions. 

There are two questions which merit some inspec­
tion within this formalism: the choice of the basis 
set of interacting configurations and the self con­
sistency of the results. 

Selection of the Basis Set of Configurations 

In a limited CI treatment it is customary to ex­
pand the functions "iJ!:' in terms of a restricted 
basis set of (orthonormal) approximate eigenfunc­
tions of the discrete spectrum of the problem under 
consideration, i.e., 

"iJ!f., = L L Cl)..k«rp~. 
I A 

In a complete CI treatment one must expand the 
functions in terms of a complete basis set of approxi-

which can be rewritten ass 

+ L L "iJ!!;1 1'" dm~.kx(E)"iJ!'(E) dE, m.. 0 
(4) 

where "iJ!' (E) is an appropriate free-electron function 
and "iJ!!;1 represents an exact, discrete eigenfunction 
of the (N - I)-electron Hamiltonian. The sum­
mations over m, fJ, extend over the complete discrete 
spectrum of eigenfunctions of the singly-charged, 
positive ion; for this reason the energy-integration 
limits have now been changed to 0 and ex>. The 
degeneracy indicated by V is now taken care of by 
the summations over m, fJ,; furthermore for "iJ!1(E) a 
linear combination of the two possible independent 
(degenerate) functions must be taken. 

The set of equations represented by Eq. (4) may 
be solved for the functions "iJ!1~' One can write, in 
general, 

3 See any textbook for further details. In particular, E. C. 
Kemble, Fundamental Principle8 of Quantum Mechanics, 
(Dover Publications, Inc., New York, 1958), Chap. VI 
(especially pp. 211, 212, 215 if.). 

'Hereafter, except when reference is made to limited Cl 
treatments, the functions <fiN are supposed to be approximate 
functions for all the discrete states of the problem under 
consideration. 
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(5) 

which is the expansion to be used. 
The problem which arises because of the inclusion 

of the continuum may be solved by the following 
argument. Let us assume that the expansion for the 
exact wavefunction 'Ir~ .. for the lowest state has 
been determined. One can then write 

(~a IJCI 'Ir~a) = E~ 
(assuming 'Ir~ .. to be normalized); i.e., the numerical 
value E~ can be found even if its evaluation, as 
given by the preceding equation, implies operations 
with the infinite integrals f~ P"'I',~.(E)'Ir'(E)dE. 
Therefore, these infinite integrals must be conver­
gent, and one can, in principle, replace them by a 
function Om .. , function only of the positional coordin­
ates of the electron involved. One can then rewrite 
Eq. (5), in general, as 

'I{. = L L CI>.,k<1>f~ + L L C",,,,h'lr!;10,,,,,. 
l X m I' 

A general formula for 0"." cannot be given at this 
moment. One can see from Eq. (5) that 

('Ir:.-1 J:'+~ 'Ir'(E) dE I 'Ir£'. > = 0 

= L L cn'k«'Ir:;1 lE'+~ 'Ir'(E) dE I 1>:;') 
I ~ B' 

+ L L ('Ir:.-1 lE'+~ 'Ir'(E) dE I ~;1 
m '" B' 

X ia> P"'I',h(E)'Ir'(E) dE> 

and therefore 

p"'I',h(E') = -lim 1]-1 L L CI~,h 
~-o() I ~ 

X ('Ir:.-1 L~'+~ 'Ir'(E)dE I 1>1~> 
which implies that one will be concerned with the 
infinite integrals 

1'" {-lim 1]-1 L E CI~,k< 
o ~-O I ~ 

X (~.-1 L~'+~ 'Ir'(E) dE I 1>:;'>~'(E') dE' 

to be determined in each case depending on the basis 
set of functions 1>:;'. 

The functions 'Ir!;10",,, will be assumed to satisfy 

the conditions 

('Ir!;10", .. I 'lrf~) = 0, 

<~;10 ... " I ~.-10n.) = 8"'n8 .... 

Self-Consistency of CI Treatments 

Taking into account the results of the preceding 
section one can write (see the Appendix) 

IN!~a = :E :E (JbP,G"'Ir~ + :E fa> ~a.G .. (E)'Ir~(E) dE 
b P a • 

Substituting into Eq. (1) we obtain 

H'Ir~ .. = E~'Ir~" - :E :E (Jbp,aa'lr~ 
b (J 

- L E t''Y,aa'lrZ'.;10.'Y' (6) 
• 'Y 

The coefficients 8bP ,G" and t.'Y ,GO! being given by 

8G .. ,Ga = E~ - ('Ir~" I H I~ .. ), 
(JbP,GO! = -<'Ir~1 H 1'Ir~ .. ), 

rC1 ,G" = -(--Y.'.;10''Y1 H I~,,), 

one can rewrite Eq. (6) as 

(H I ~a) - E :E 1'I{,s)('lrf,s1 H 1'Ir~,,) 
b P 

- :E :E 1'lrZ'.;10q)('Ir:.;10''Y1 H 1'Ir~,,) 
• "I 

+ 1'Ir: .. )('Ir:a I JC 1'Ir: .. ) = 1'Ir~a)E~. 

Defining a new operator F by 

F = L: L: 1'Irf.)(qrf.1 H) 
k 

- L :E 1~;1 On.)(~;1 On. I H) .. . 

+ L E l'lrf.)('lrf.1 JC 1'I{.)('Ir~.1 
k • 

- :E E (H I 'Ir:.-10 ... )('Ir:.-10 •• 1 .. . 
it can be seen that 

(7) 

This equation is then equivalent, though not 
identical, to Eq. (1). The equivalence should be 
understood in the sense that both equations have 
the same discrete solutions. This equation can be 
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best solved for the lowest state by a variational 
treatment, with the SCF formalism.6 

The expectation value for the energy is given by 

EN = (w~,,\ F \~,,) 
G (~tx \ w~,,) 

where ~tx is not assumed to be normalized.e 

Giving an infinitesimal variation to the function 
W~tx (but keeping everything else constant) we obtain 

(~" \ ~tx)a~ + E~a(~tx \ w~,,) 
= a(w~" \ F \w~tx}. (8) 

The orthonormalization conditions for all the 
wavefunctions must be satisfied at any time. The 
total constraint to be introduced in the expression 
for the variation of the energy is 

+ L: L: w .... G"(~,, \ W:;10 ... } .. . 
+ L: L: WGtx .... (w:.-10 ... \ ~tx} = O. (9) .. . 

We add Eq. (9) to Eq. (8) and set aE to zero. The 
resulting equation can be separated, after some 
manipulation, into two equations, one for aW~tx and 
the other for a~tx' which are complex conjugates 
of each other. The first one can be written as 

(~tx \ G"txw~" - E~~« - L: L: Xh.G"i{. 
k • 

- L: L: w .... G "w:.-1 0 ... ) = 0, (10) .. . 
with 

G"tx = L: L: \wf.}(wf. \ H) - 1'I!~,,}(~a I H) 
k 

L: L: 1W:;10".}(W:;10 ... 1 H) 

L: L: L: L: l'I!f.)('I!f.1 H 1'l1~)(wf~ 1 
k I • ~ 

+ L: L: 1i{.}('I!:.1 X 1'I!:.)(i{. \ 
k • 

+ \~"}('I!~,, 1 X I'I!~")('I!~,, 1 
L: L: L: L: l'I!f.)(w:.1 H \'l1~)('I! I~ I 

k I • ~ 

L: L: (H 1 ~;10 ... )(~.-10 ... 1 

- (H 1 'I!:")(w~,, 1 + L: L (H \ wf.)(wf.l· 
k 

In order that Eq. (10) will be satisfied it is neces­
sary that the coefficients of a~" in the integrand 

I Only the general description will be given here. For more 
details, see Ref. 1. 

I While the variational treatment is discussed, the functions 
~N are not the exact functions, but the same notation is 
maintained, for at self-consistencYl the exact eigenfunction 
for the lowest state will be obtained. 

vanish. This leads to the equation 

GG"'I!:" = E~w~" + L: L: Xk •• ""wf. 
k • 

+ L: L: w .... ""'1!:.-10 .... .. . 
where it can be seen that 

X"".G" = (w~" I GG" I'I!~,,) - E:, 

Xh.G" = ('I!f.\ Gaa \'I!~,,), 
w ...... a = (w:.-1 0 ... \ GG" Iw~,,). 

Therefore one can rewrite Eq. (11) as 

(GG" I w~,,) - L: L: l'I!f.)('I!f.1 GG" I'I!~,,) 
k • 

(11) 

- L: L: 1'I!:.-10 ... )('I!:.-10 ... \ GU \~,,} .. . 
+ Iw~,,)('1!:;.\ X Iw~,,} = \'I!:tx)E~. 

Defining a new operator r" by an expression 
completely similar to that for F, but replacing H 
by G'u" one obtains 

(r" 1 w:,,) = I'I!~,,)E:. (12) 

This eigenvalue equation could now be solved for 
the lowest state, in principle, in the manner common 
to all SCF procedures. One would assume a set of 
trial functions, evaluate the operator r a and solve 
Eq. (12) for an improved form of the functions. 
These new functions are used in repetition of the 
process until self-consistency has been reached. 

The solution of Eq. (12), as indicated above, is a 
close-to-impossible task. Such an obstacle may be 
overcome in numerical calculations by expansion 
of the wavefunctions in terms of a basis set of 
approximate eigenfunctions (LCAE). 

In a first approach (limited LCAE approximation) 
one can use a restricted basis set of discrete, approxi­
mate eigenfunctions, i.e., 

'l!f. = L: L: cn.k<<I>f~ = filCh, 
I A 

where fIl is a row vector and Cke is a column vector; 
the ordering of the elements is done on the basis of 
the subindices lAo In a consistent treatment 'I!:.-10". 
should then be expanded in terms of a basis set of 
approximate eigenfunctions of the continuum, con­
sistent with (and therefore orthogonal to) <I>/~' In 
such a case the continuu:m contribution within the 
operator vanishes. 

The corresponding matrix equation to be solved is 

(13) 
where 

JG" = SCD - Daa)H - SCD - DG")HDS 

+ SAS - SDH(D - DGa)s + H(D - DG<I)S, 
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A = L L DkK:reDh, Mh,/X = (q,f./ M /q,fx), 
k 

with M standing for H, X, or S. 
The solution of Eq. (13) is carried out in the con­

ventional way by trial and error until the desired 
self-consistency has been reached. It can be seen 
that at self-consistency the eigenvectors are precisely 
those which diagonalize the matrix :re. In other 
words, the normal CI procedure provides a self­
consistent treatment within the approximation 
chosen (use of a limited basis set of approximate 
functions) . 

In a complete LCAE treatment we must expand 
the functions in terms of a complete basis set of 
approximate functions. One can use (see before) the 
expansion 

'lIf. = L L c,x,kKq,fx 
I x 

.. 
where eft is a row vector formed by the functions 
q,N, wN-1n, and CkK is a column vector. 

The matrix equation to be solved is 

Jaa caa = E~Scaa, 
with 

r a = (xaa + yaa) + (Xaa + yaa) \ 

xaa = SeD - Daa)H - SeD - Daa)HDS + !SAS, 

yaa = SOHot _ S(2D _ Daa)Hosot + S~"'Sot. 
The adjacent diagrams give the structure of the 
matrices. 

M - [ M(q,N, q,N) M(q,N, 'liN-In) ]_ [MI M2] 

M('lIN-1n, q,N) M('lIN-1n, 'liN-In) M! Ma 

M'" = Ma. 

The solution of this matrix equation would be 
carried out in the normal way by successive itera­
tions, until the desired self-consistency would have 
been reached. It can be seen that again in this case, 
as for the limited LCAE treatment, at self-con­
sistency the solutions are precisely those which 
diagonalize the matrix 3C. That is, a complete CI 
treatment would also lead to self-consistent results. 

SCF EXACT AND CLOSE-TO-EXACT SOLUTION 

TheSCF exact solution of the electronic Schrodinger 
equation can therefore be obtained within the 
formalism of direct configuration interaction, know-

ing that the solution of Eq. (2) leads to self-consistent 
results within the basis set chosen. The expansions 
to be used are given by Eq. (14), which implies that 
the matrix :re is finite, its dimension being equal to 
the number of discrete eigenstates for the N-electron 
problem plus the number of discrete eigenstates for 
the (N - l)-electron problem. 

The practical procedure to be followed can be 
summarized in this way. The functions q,M are 
determined. 7 The exact functions n are determined 
(see before) or the approximate functions n' are 
arbitrarily chosen. Assuming that the functions 
'lIM- 1 are known, the set of functions (wM-1n)o or 
('lIM-1n')o is formed. In this second case the matrix 
:re"', evaluated with the basis set of functions 
('lrM-1n')0, is first diagonalized; the functions ob­
tained in this way are labeled ('lIM-1n)o. Though 
they are just an approximation to the exact func­
tions, the same notation is used in order to simplify 
the following discussion. 

Now the matrix:re is evaluated using the basis set 
of functions q,M, ('lIM-1n)O. Its diagonalization will 
lead to the self-consistent solutions 'lI:C, ('lIM-1n)I' 
The process is repeated using the functions 
w:C, ('lIM-1n)O and the functions 'lI:, ('lIM-1n)2 are 
obtained. The procedure is repeated until the desired 
self-consistency for the basis set has been reached.s 

This self-consistency can be taken to have been 
reached when ('liM-In).. == (WM-1n)O, within the 
limits imposed. 

The solution found for the lowest state, when 
using the exact functions n will approximate the 
corresponding exact solution of the SchrOdinger 
equation within the precision limits determined by 
the self-consistency conditions. 

It must be pointed out that for the solution of the 
M-electron problem it is necessary to know the 
functions WM

-
1

• This means that the (M - 1)­
electron problem (for the same skeleton of nuclei as 
correspond)ng to the system under consideration) 
must have been solved previously. But the solution 
of this problem, to be carried out in a similar way 
as for the M-electron problem, implies the knowledge 
of the functions 'lr M

-
2

, etc., etc. Therefore an aufbau 
process must be followed, with the calculations being 
carried out successively for Al = 1, 2, 3,' . " N -1, N. 

The preceding formulation and discussion applies 

7 The functions ~ can be determined by any method, 
but it would be expected that SCF functions would insure a 
faster convergency. In this connection see Ref. 1. 

8 Each iteration produces self-consistent solutions for the 
basis set used; the final solutions correspond furthermore to a 
self-consistent basis set. The subscripts used in this section 
label the iterations. 
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to those cases where the number of discrete eigen­
values is finite; that is, for systems for which the 
neutral and all the positively-ionized states have 
only a finite series of discrete negative eigenvalues, 
the formulation can be applied as presented here 
and should lead (using the correct functions n) to the 
exact solution. 

But there are other cases of more practical inter­
est, namely, when there is an infinite series of dis­
crete, negative eigenvalues.1I In such cases the in­
finite series of discrete, negative eigenvalues must 
be arbitrarily subdivided into two sets, one including 
a. finite number of normal, discrete levels, the other 
including the vast majority of the terms of the in­
finite series. This second set can be replaced by a 
function 1', which can be defined by an argument 
similar to the one given for the functions n. 

PRACTICAL CALCULATIONS 

The determination of the functions nand T is a. 
close-to-impossible task. But in any case the present 
formulation offers certain definite advantages with 
respect to the classical CI procedures. 

In normal CI treatments there are two deficiencies 
which cannot be corrected. When proceeding within 
the framework of the LCAO MO method, the choice 
of (relatively) small basis sets (because of practical 
considerations) restricts the number of possible 
configurations which can be used. But even not all 
of these configurations (and the situation is worse 
when larger basis sets are used and higher-lying 
configurations are taken into account) have a physi­
cal meaning. Most of them (and this is common 
experience in the virtual MO approximation) lie 
above the groundstate of the theoretically-deter­
mined positive ion. 

In the present formulation this situation is changed. 
Using the same basis set one can have a much larger 
number of physically correct configurations, span­
ning the complete range of negative energies, from 
the groundstate of the neutral system to zero. Of all 
the possible configurations, one uses, e.g., for the 
neutral system, the ones corresponding to energies 
lower than the energy of the groundstate of the 
singly-charged, positive ion; for this system one takes 
only those configurations with energies below that of 
the groundstate of the doubly-charged, positive ion, 
and so on. In this way one has an extended set of 
interacting configurations. 

Instead of the functions <l>N- ln one can use deter­
minantal functions, properly antisymmetrized, with 

9 See Ref. 3, p. 215. Even in this case it is necessary to 
introduce the continuum contribution. 

the ionized electron described by molecular orbitals 
that, with proper orbital exponents, are only of 
significance in those regions where interactions are 
small. A similar formulation is used in the cases when 
there is more than one ionized electron. 10 

The aufbau process can either be carried in a 
single-step or in a multiple-step fashion, depending 
on the practical convenience. In the one-step pro­
cedure the wavefunction to be used is given by 

(with n running from N to 1) where, as pointed out 
before, the antisymmetrized functions <1>" are formed 
from bound orbitals and as many nonbound orbitals 
as given by (N - n). 

When large basis sets can be used in practice and 
the approximate wavefunctions for the excited 
states are determined within the framework of the 
SCF procedure, the subdivision of the series of dis­
crete eigenvalues (mentioned above) can be carried 
out in a straightforward manner. The separation may 
be done at that excited level En for which the energy 
of the groundstate of the next ion lies within the 
interval (E" ± Ai).l1 

APPENDIX 

The expansion 

'II = L L C/~q,/~ + L fa> c"(E)q,,,(E) dE 
I ~ " • 

is valid for a function 'II which is a. quadratically 
integrable, class-D function. 

This type of expansion has been used for the 
functions <l>k~ and Rq,~a. These functions are cer­
tainly quadratically integrable. In particular, the 
integral (Rq,~a I Rq,~a) appears in a modified varia­
tional treatment for excited states, and it is ex­
pected to have a finite value.12 

Though for many-electron systems it is not pos­
sible to prove the general theorem of the approxima­
tion of arbitrary quadratically integrable functions 
by means of class-D functions, this theorem is 
generally assumed as a postulate, which we do here. 

Therefore, for our purposes, it is enough to know 
that whether <l>k~ and Rq,~a belong to class D or 
not, it is possible to define quadratically integrable 
functions, which belong to such class and which 
approximate them as closely as desired. The expan­
sion, as given above, follows immediately. 

10 Two basis sets of atomic orbitals will be needed: one 
for the bound electrons, the other for the ionized (nonbound) 
electrons. . 

11 See the second paper of Ref. 1 for complete details on 
the determination of d. 

12 See the second paper of Ref. 1. 
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Covariant wave equations are derived for nonzero-mass particles of arbitrary spin, with wave­
functions that involve no redundant components. The Dirac equation is seen to be the first of these, 
for spin ;i the Proca vector meson equations for spin 1 are the next set. The derivation is based on 
synthesizing higher-spin particles from particles of lower spin. 

INTRODUCTION 

T HE problem of constructing covariant higher­
spin equations has been extensively studied.1

•
2 

The construction of these equations usually involves 
redundant components. For example, the Duffin­
Kemmer equation for 8 = 1, involves a ten-com­
ponent wavefunction, and only three of these can be 
considered as independent, corresponding to spin 1. 
We give a general formulation for arbitrary spin of a 
covariant wave equation which does not involve 
any arbitrary components, i.e., no redundancy in 
the wavefunction. 

Section I considers the Dirac equation in the form 
desirable for our considerations; Sec. II considers the 
vector meson and a covariant wave equation for this 
spin 1 case, which does not involve any redundant 
components. Section III demonstrates how the spin-I 
case can be synthesized out of two spino! cases. 
Section IV considers the general case and derives 
the covariant wave equation for arbitrary spin. 
Section V considers the question of the meaning of 
the synthesis of higher-spin particles from combina­
tions of lower-spin particles. 

We use the word "wavefunction" in the sense of 
meaning a state vector, depending on the 4-mo­
mentum pI' plus spin indices. 

I. THE DIRAC EQUATION 

We write the Dirac equation in momentum repre­
sentation in a form convenient for our purposes: 

where 

1/1 = (;) ("', fl transform as spinors). 
----

* This work was carried out as a part of the Lockheed 
Independent Research Program. 

1 H. Umezawa, Quantum Field Theory (North Holland 
Publishing Company, Amsterdam, 1956). 

I H. J. Bhabha, Rev. Mod. Phys. 17,200 (1945); 21, 451 
(1949). The philosophy of the methods used in this paper 
(synthesis of higher-spin particles from those of lower spin) 
is also related to the "methode de fusion" of L. de Broglie, 
although the methods and explicit formalism are somewhat 
different. L. de Broglie, TMorie Gmb'ale des Particules a Spin 
(Gauthier-Villars, Paris, 1954). 
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Thus 
E", = (d'p)", + mfl 

Efl = -(d,p)fl + mI{J. 

(1.1) 

The usual transcription is [metric y'" = (1, -1, 
-1, -1)] 

{3 = 'Yo = Pl a = {3y = Pad y = -ip2 d 'Y5 = -iPa 

and therefore 
-i'Y" a1/l/ax" + m1/l = O. 

In coordinate space 

-ip,. +-+ a/ax". 

The more usual representation for the 'Y matricesa 

is 

i.e., 

u == (1/ "\1'2)(", + fl); v == (1/ "\1'2)( -'" + fl). 
The usual representation has the advantage that 

the nonrelativistic limit of the momentum space 
solution of the Dirac equation takes an especially 
simple form. However, the u, v do not transform as 
two component spinors under the Lorentz group; 
all four components are mixed. 

The representation that we use transforms as two 
component spinors under the Lorentz group, since 
Eqs. (1.1) are covariant under the transformations: 

Spatial rotation 

P-+P + 6xp, E-+E 

'" -+ '" - !i(d·6)"" fl -+ fl - !i(d·6)fl; 

Lorentz transformations 

p-p-6E, E-+E-(6.p), 

'" -+ '" - !Cd' 6)"" fl -+ fl + !(d·6)fl; 

(1.2) 

(1.3) 

8 S. S. Schweber, Introduction to Relativi8tic Quantum 
Field Theory (Row-Peterson, Evanston, Illinois, 1961). 
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Space and time inversion 

(X! = X~ = +1). 

We see that f{) and 71 are-separately-spinor 
representations of the proper Lorentz group. 

The Foldy-Wouthuysen transformation is defined 
in our representation as follows: 

where 

u == (w)i exp (~AP2d'p) exp (-ii'll'pJ 

= 2(w + m)-i[(w + m) + (d'p) 

- ip2(W + m) - (d'p)], 

i.e., 

!p(p, E) = 2(w + m)-i[(w + m + d'p)x 

- (w + m - d·p)t). 

Then we have the wave equation in the FW repre­
sentation 

(1.4) 

which shows that the wavefunctions x and r have 
positive and negative energy respectively. 

The wavefunctions X and r transform according 
to the canonical representation 4 of the proper Lorentz 
group. The canonical representation is explicitly 
unitary, whereas the representation of the proper 
Lorentz group, Eq. (1.3) is not unitary. This is con­
nected with the fact that the transformation U is 
not a unitary transformation, due to the presence 
of the factor wi. 

The transformation of the FW wavefunction is 
given by 

Spatial rotation: 

p~p + Oxp, E~E, 

x ~ X - !i(d'O)x, r ~ t - !i(d·O)ti 

Lorentz transformation: 

p~p - OE, E~E - (O·p) 

4 L. L. Foldy, Phys. Rev. 102, 568 (1956). 

(1.5) 

(1.6) 

We see the distinction between the usual Dirac 
laws of transformation, Eq. (1.3), and the canonical 
transformation, Eq. (1.6). The Dirac-type trans­
formation has the advantage that in going to the 
coordinate space representation, the transformations 
corresponding to Eq. (1.3) are local (since they do 
not depend on p): 

Rotation 

!p'(r', t') = [1 - !i(d·O»)!p(r, t)i 

Lorentz transformation 

'(' t') - (1 i d· 0 x p ) ( ) 
X r , - - 2 (m + io

t
) X r, t . 

This is also the reason for the necessity of mixing 
positive and negative energy states in going from 
the FW wavefunction 1/IFw to the locally transform­
ing Dirac wavefunction 1/1. To form a local quantity, 
i.e., a delta function, one has to mix negative and 
positive energy states. 

As we shall see, this state of affairs will hold for 
arbitrary spin: simple transformation laws will lead 
to complicated wave equations, whereas the simple 
wave equation of the form of Eq. (1.4) will require 
complicated, nonlocal transformation properties of 
the wavefunctions. 

n. THE SPIN-l FmLD 

The equation for the vector meson field may be 
written (Proca field) in momentum space as follows: 
(E = energy operator ;;6 E) 

p·B = 0, 

p.E = im2!p, 

and therefore 

E = -ipip + iEA, 

B = ipxA, 

p xB = -EE + im2A, 

pxE=EB. 

(2.1) 

We now consider the 3 X 38 = 1, representation 
of the three-dimensional rotation group, R3 , defined 
by (8,) .... == -iElmn' 

Therefore 
.. -3 

L (S·O)m .. X " = i(O xX) ... 
n-l 

,,-3 . 

L [(S·W)mnX .. = -[OX(OxX»),... 
.. -1 

Now define the two vectors Zl.2 == E ± ~'B. This 
pair now has transformation properties that are in 
exact analogy to our representation of the case 
8 = !, Eqs. (1.2) and (1.3). 
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Rotation 

Zl ~ Zi - i(S·6)Zl' Z2 ~ Z2 - i(S·6)Z2; 

Lorentz transfonnation 

p~p - 6E, E ~E - (6·p) 

Zl ~ Zi - (S·6)Zl, Z2 ~ Z2 + (S·6)Z2' 

(2.2) 

(2.3) 

We now desire a wave equation analogous to the 
Dirac equation, for the spin-l case. It must there­
fore involve only the wavefunctions Zi and Z2 and 
p, E, with the matrices S in the combination (S.p) 
and be covariant under the transfonnations, Eqs. 
(1.2) and (1.3). 

Now· 

the covariant Proca equations, we know that our 
fonnalism is covariant. However, it is of interest in a 
later context, to prove the covariance of the for­
mal:sm directly. 

For the case of rotation, we have 

p~p + 6 + p, 

Z ~ Z - i(S·6)Z, 

so we must have that the over-all change in the wave 
equation, Eq. (2.6), is zero under this transfonnation. 
Thus, we must have 

2(Sp)(S·6 xp) + 2(S·6 xp)(S·p) 

- 2i(Sp)2(S6) - 2PaE(S'6 xp) 

- 2ipaE(Sp)(S6) + im2(Pi - 1)(S6) = O. (2.7) 
px(pxE) = EpxB, 

px(pxB) = -EpxE + im2(-~'B), 

and therefore 

(2.4) Now from the commutation relations of the repre-

px(pxZ1) = E[pxB - ipxE] + im2B, 

PX(PXZ2) = E[pxB + ipxE] - im2B, 

which is equivalent to 

2:J(P)Z == [2(S·p)2 - 2PaE(S·p) 

+ m\1 - Pi)]Z = 0, 

where 

(2.5) 

(2.6) 

This equation now contains the vector meson 
equations. Equation (2.4) yields p·B = O. 

Now define the auxiliary quantities rp, A in tenns 
of E, B: 

m 2rp == -ip·E; m2A == -(ip xB + EE). 

Then, 

pxA = -im-2 [px(pxB) +EpxE] = -~'B, 

EA = -im-2[Ep xB + ",2E] = -~'E + prp, 

(",2 == m2 + p2). 

We may, therefore, regard Eqs. (2.5) or (2.6) as 
the natural counterpart to the Dirac equation for 
8 = 1. The adjoint operator is defined as 

.fJl(P) == 2(S .p)2 + 2PaE(S .p) + m2(1 + Pi), 

which acting on Eq. (2.6) yields 

'21(p)2:(p)Z = (m2 '- E2 + p2)2Z = O. 

Since our equation, written in vector fonn, yields 

sentations of the radiation group, Rat we have 

[S'a, S·b] = is·a xb 

and therefore 

[(Sp)2, S6] = i(Sp)(S·px6) + i(S·px6)(S.p). 

Substituting this in Eq. (2.7), we see that the 
over-all change in the wave equation is zero, and 
the equation is covariant under spatial rotations. 

For Lorentz transformations, we must prove that 
under 

p~p - 6E 

E ~E - (6.p) 

Z ~ Z - Pa(S·6)Z, 

Eq. (2.6) does not alter fonn. The procedure is 
analogous to proving covariance under spatial rota­
tions, except that it is necessary to make use of 
specific properties of the 3 X 3 representations of 
Ra. (Note that in proving covariance of the equation 
for spatial rotations, no use was made of the proper­
ties of the S matrices, beyond the commutation 
relations which are valid for any spin.) 

The necessary property, which holds only for the 
3 X 3 representations, is 

{(Sp)\ (S'6)}+ = p2(S·6) + (6·p)(S·p). 

This is used in moving (S· 6) to the left of (S·p)2 
and then making use of the wave equation to elimi­
nate (S.p)2, one can easily show that the equation is 
covariant. 

This is a characteristic which is later shown to be 
true of the general wave equation: covariance under 
spatial rotations does not need to make use of the 
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the Pauli matrices as follows: specific properties of the representation of spin 8 

being used. Proof of covariance under Lorentz trans­
fonnations, however, does require making use of the So 
specific properties of the representation b.eing used. 

(Hlk I !m1!m2) = i(0"2(i) ... , ... .1 0. 

The Taketani-8akata equation5 for the spin-1 
particle is related to the fonnulation given here as 
follows: 

Let 

then 

[iP1{ _(S;;) 
2 

+ :~} + pa{m + :~}}r = Ew. 

The wavefunctions Wand Z are clearly related, 
and both obey wave equations of somewhat similar 
fonn. The transfonnation properties of Wunder 
Lorentz transformations are, however, considerably 
more complicated than those of Z. 

Equation (2.6) when transfonned to coordinate 
space becomes 

v xCV xZ) + Pa(V xaZjat) 

- !m2(1 - Pl)Z = o. (2.8) 

Although Eq. (2.8) contains the space and time 
coordinates in an unsymmetrical manner, it is in 
fact covariant. This emphasizes the point that 
treating the space and time variables on a sym­
metrical footing (as one does in the usual heuristic 
derivation of the Dirac equation) is sufficient for 
covariance, but not necessary. 

III. SYNTHESIS OF SPIN 1 FROM SPIN 1/2 

We now consider the possibility of synthesizing 
the case 8 = 1 from the 8 = ! case. The observation 
that'P for 8 = ! and Zl for 8 = 1, both transform 
according to irreducible representations of the group 
Ra indicates that we may try to obtain Zl by a 
Clebsch-Gordon addition of two 'P functions, and 
likewise Z2 by adding two '11 functions. Thus, (sum­
mation over repeated indices) 

Za == (H1k I !m1!m2)'Pm,'Pm, == (k I m1m2)'Pm,C{J",., 

Z2k == (Hlk I !m1!m2h ... ,'I1m. == (k I m1m2h",,7Jm,. 

Clearly, if 'P and 7J transfonn according to Eqs. 
(1.2) and (1.3) then Zl and Z2 will transform accord­
ing to Eqs. (2.2) and (2.3). The Clebsch-Gordon 
coefficients for! + ! = 1 can be written in terms of 

5 S. Sakata and M. Takatani, Proc. Phys. Math. Soc. 
(Japan) 22, 757 (1940). 

where the adjoint wavefunctions are defined as 
2 

A __ 2.' .<\ _ ""' (2) 'P = 'PO", I.e., ¥-'a = ~'PIIO" lIa· 
11-1 

We now try to detennine the effect of the various 
powers of the 3 X 3 (S·p) on the Zl and Z2. Since 
(Sp) 3 = p2(Sp), we restrict ourselves to (Sp) and 
(Sp? 

Thus, 

(S'P)kZZIl = !(k I cxla2)[(d'P)a,fJ,la,fJ, 

+ la,fJ,(d·P)a,II.]'P/J,'P/J, 

= !(k I CXICX2)[(E'P - m7J)a,C{Ja. 

+ C{Ja,(E'P - m7J)a,] , 

(SP)!ZZIl = !(k I cxlcx2)[P2la,/J,la,fJ. 

+ (d'P)a,/J,(d'p)",/I,]'P/J,'P/I, 

= !(k I cxla2)[(p2 + E2)'Pa,'Pa, + m27Ja,7Ja, 

- mE(C{Ja,7Ja. + 7Ja,C{Ja,)], 

-E(SPhzZli = ! (k I CXICX2) [ -E2 (C{Ja,'Pa. + 'Pa,'Pa,) 

+ mE('Pa,7Ja. + 7Ja,'Pa.)]. 

We obtain [carrying out the same procedure for Z2 
and eliminating the (w + 'P7J) terms] exactly the 
spin 1 wave equation, Eq. (2.6). We have therefore 
synthesized 8 = 1 from two 8 = t cases. 

In terms of the vector field quantities, we have 

E = m~dl/l, B = -imifiPadl/l 

A = -i~Pldl/l, C{J = - h21/1. 

This indicates how a synthesis of two spin-! 
particles will yield the spin-1 case. This is a seeming 
paradox, in that we seem to be combining two mass­
m particles, to yield a mass-m particle, whereas we 
might expect a particle of mass 2m to appear. The 
resolution of this seeming paradox is given in Sec. V. 

In the next section, we consider how this synthesis 
can be carried through in general, and show that 
one can indeed obtain a covariant wave equation for 
arbitrary spin. 

The FW -type transfonnation for 8 = 1 can be 
derived from the FW transfonnation for 8 = t. We 
define the quantities 

W1k == (k I CXICX2)Xa,Xa, 

W2k == (k I CXICX2)r a,r a, 

(3.1) 
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which will transfonn according to the canonical 
representation of the Lorentz group: 

Rotation 
W ~ W - i(S·6)W; 

Lorentz transfonnation 

W1 •2 ~ W1 •2 - i[S·6 xp!(m + E)]W1 •2 • 

The three-component wavefunctions Wl and W2 

will obey the canonical wave equation 

EW = PawW, where w = (m2 + p2)l. 

Lorentz transfonnations: 

Zl ~ Zl - (S·6)Zl, 

Z2 ~ Z2 + (S·6)Z2. 
(4.2) 

We must detennine the effects of various powers 
of (S·p) on the Z, and then eliminate elements of 
the type ('P •.. '1/ '" 71 ••• 'P)' For this we must 
consider the algebraic properties of the (S.p): 

(S·p)AB == l(A I a1 .•• ak) 

X [(d·p)",.B.~".,8 • .. , ~u,8. + .. , 
+ ~".,8 •••. (d·p)" • .B.](B1 •.. (3" I B) 

Expressing x, t in terms of 'P, '1/ by means of the 
spin-l FW transfonnation, and then expressing 'P, '1/ 

or in tenns of Z, we obtain the spin-l FW transfor-
mation 

W - -.!.. [(1 _ (Sp)2 ) 
- 2m w(m + w) 

X (1 + P1) + (S'p) (P1 - 1) 
m 

+ Epa (1 + (s,p?)(1 + )Jz 
w mew + m) P1, 

Z = ; [(1 + m(~'22w»)(l + P1) 

+ (S;:) (1 - P1) Jw. 
IV. THE GENERAL SYNTHESIS 

Weare now in a position to determine the general 
synthesis of the higher spin covariant wave equation. 
We proceed in exact analogy to the 1 = ! + l case, 
by combining k 8 = l particles, to a total spin of !k. 

We define (summing over repeated Q! and fJ), 

zt == (A I a1 ... ak)'Pa, .. , 'Pa. 

Z: == (A I a1 •.. ak)'1/a, •.• 71a., 

where the generalized Clebsch-Gordon coefficien:ts 
(A I a ..• ) express the addition of k 8 = ! particles 
to fonn a 28 + 1 entity which transfonns according 
to the irreducible (28 + 1) by (28 + 1) representa­
tion of Ra. Note that the order of adding the particles 
together is important in the sense that two different 
orderings, define two different Z wavefunctions, 
which are connected by a unitary trdonsfonnation. 
(For k = 3, they are connected by the 6j symbols.) 

The Z will now transfonn according to the (28 + 1) 
by (28 + 1) matrices: 

Rotation: 

Zl~Zl - i(S.6)Zl, 

Z2 ~ Z2 - i(S·O)Zll; 
(4.1) 

(S'plB ~ ![(d'p) X 1 XI··· X 1 + .. . 
+ 1 X 1 X ... X (d·p)]. 

Now define (do' p) as the sum of expressions of the 
form 

1 X ... X (d'p) X ... X (d'p) X ... 

(k factors, of which q are d'p), where we sum over 
all pennutations of position of the q (d'p) factors. 

Thus 

(d1'p) = (d'p) X 1 X .. , + ... 
+ 1 X .,. X (d'p) 

(d2 'p) = (d'p) X (d'p) X ... + 1 X (d'p) 

X 1 X (d'p) + '" + 1 X 

X 1 X (d'p) X (d'p) 

(d".p) = (d.p) X (d'p) X ... X (d'p) 

(q> k). 

Then we have 

(S·p) ~ t(d1·p) 

(S.p? ~ !kp2 + !(d2 'p) 

(S·p)a ~ p2!(3k - 2)(S·p) + !(da'p) 

I 

(S.p)H1 ~ ~ t?+1)(S.p)Hl-2i(p2)i, 
i-1 

(k = 2l or 2l + 1), 

which defines the coefficients W) . 

(4.3) 
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Consideration of recurrence relations [obtained by 
multiplying (S·p)" by (S·p)1 yields (with t~,,) == -1) 

t~·+l) = tt' - tn(k - n + l)f~~-;:ll (4.3a) 

and 

t}") = 0 for j > In. 

A discussion of these algebraic relations is given 
in the Appendix. 

We now proceed to the study of the general wave 
equation. Define X e as the sum of the generalized 
Clebsch-Gordon combination of q 1/-functions and 
(k - q) ~functions, summed over all permutations; 
define Y. as the same with 'P and 1/ interchanged. 
Thus, 

xt == zt == (A I al ... ak)'Pa • ... <Pa. 

Y: == Z: == (A I al ... akha • ... 1/a. 

xt == (A I al ... ak)(1/a.'Pa • .•. + ... 

Define, as for the case 8 = 1, the general wave­
function Z 

and likewise 

WA (X~) ,== Y~ (r = 1 ... k). 

We see that for k = even = 2l (8 = l) (since, e.g., 
X k - 1 = Y l ) 

(p=I"'l) (4.4) 

and for k = odd = 2l + 1 (8 = 1 + !) 
(r = 1 ... 1 + 1). (4.5) 

Now consider the action of the operator (d.·p) 
on Zl: 

(A I al .•• ak)(d.·p)a •.... ~ •... (.8l •.• I B)(B I 'Yl ... )'P., • .•. 

= (A I al ... ak)[E { ... (d·P)a.~.'P~ •... (d'p)",~,<p~, ... )] 
(p) 

= (A I al ... )[E { ... (E<Pa. - m1/"J ... (E'P", - m1/",) ... }] 

where the sum is over the permutations. 
The analogous term for Z2 results in the combined 

equation 

(A I al •.. )(d.·p)" .... ~ ... (.8l ..• I B)ZB 

(q = 1 ... k), 

This array of equations can now be solved for W~, 
and we then obtain 

w: = -.!. t (- paY-iEi(k - 8
J
. + j) 

m .-0 
X (A I a .. ·)(d.- i ,p)"' .. /l ••• (.8 ... I B)ZB. 

Now we must express the (d.-i·p) in terms of the 
(S·p) and eliminate the w~ using Eqs. (4.4) and 
(4.5), thus obtaining a wave equation for ZA in­
volving only powers of (S·P) and p, E. 

Making use of Eq. (4.3), we have 
[ (.-i)/2J E f~,-j)(S.p)'-i-2'(p2r· 

,-0 

(v) 

So 

~ [('~2J 2·- i (P2)'(_ )'-iEi W: = -m-' k.J k.J Pa 
i-O ,-0 (8 - j)! 

X (k - ; + j)f~,-j)[(S.p)'-i-2,tBZB. (4.6) 

Now use Eqs. (4.4) and (4.5) to eliminate w~. 
Let k = 2l + ~ (k = even, ~ = OJ Ie = odd, 5 = 1), 
then 

Use Eq. (4.6) to express W1+1 and Pl W1-lH and 
equate the two. Then after algebraic manipulation, 
we obtain 

~:B (P)ZB == ~ T. {[ pa(~'P) JYB ZB = 0, (4.7) 

where 

T. == E2F!1l(p2jE2) - Plm2(Ejm)8F~2)(P2jE2) 

== E2D!ll(m2jE2) _ Plm2(Ejm)8D~21(m2jC), 
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TABLE 1. Covariant wave equations for 8 :$; 4. 

Spin 

I 
1 
! 
2 

! 
3 

i 
4 

and 

(-paS. p)O (-paS· p)1 

E-Plm 2 
m2(I-PI) +2E 

3(m2+E2) -6mEpl 4(2E-mpI) 
6m2E(I-PI) ( 4E2+2m2)+3m'(I-PI) 

15[E(E2+3m2 ) 46E2 +26m2 -48mEpl 
-Plm(3E2+m2)] 
9m2(4E2+m2)(I-PI) 6E(2E2+3m2) 

+3Om'E(I-PI) 
I05[(E'+6m2E2+m') 
-4PlmE(E +m2)] 

8[4E(1lE2+19m') 
- Plm(71E2 + 19m2») 

60Em2( 4E2 +3m2) 6(8E'+24m2E2+3m') 
X (I-PI) +5m2(52E2+11m2)(I-PI) 

[(I+l-0)/2J 

F~l)(x) == ~ B~})( _X)i 
i-O 

[(lH-I-0)/2) 

F~2)(X) == ~ h~~)( _X)i, 
i-O 

where 

B(~) = 2
0 [2l + 6 - q - 2j] C~+2i 

0' - (q + 2j)! l + 1 _ q _ 2j , 

B(2) = 2
0 [2l + 6 - q - 2j ] co+2; 

.1 - (q + 2j)! l + 6 _ 1 - q - 2j i 

[(1+1-0)/2) [(1+1-.)/21 ( ) 

D!I)(X) == ~ ~ (-1)" ~ B~!)(_X)I 
j-O .-1 J 

[(I-IH-0)/2) [(I-IH-0)/21 ( ) 

D~2)(X)== ~ ~ (-I)·~B~=)(-x);. 
j-O .-j J 

The coefficients Cr2j are determined from the 
recursion relations in the Appendix. We illustrate 
with two examples, k = 1,2: 

(1) k = 1, l = 0, 6 = 0, 8 = ! 
F~l) = 2 F~I) = 1 F~2) = 1 

TI = 2E2 To = E2 - PI (Em) 

(E2 - PIEm) + 2E2(-P3S ·P/E) 

= E[(E - mpI) - 2paCS·p)] = o. 
This is just the Dirac equation, since for 8 = !, 

we have 

(S·p) = !(d·p); 

(2) k = 2, l = 1, 6 = 0, 8 = 1 

F~l) = (1 - ~:) F~2) = 1 
To = E2(1 - p21C) - Plm2 = m2(1 - PI) 

(-P 3S . p)2 (-P3S· p)1 (-paS· p)' (-paS· p)1 

2 
4 

6E 2 
12(3E-mpI) 8 

22E2+8ml 12E 2 
+6m2(I-Pl) 

8[43E2 + 17ml 

-30mEpI] 
32(4E-mpl) 16 

IO[(IOE2+11m2 ) 1O[7E2+2ml 20E 2 
+9m2(I-PI)] +m2(I-PI)] 

F~I) = 2 T2 = 2E2 

.. m2(1 - PI) + 2E2( - PaS· piE) 

+ 2E2( - PaS·pIE? = o. 
which is just our spin-l equation, Eq. (2.6). 

The general problem of constructing wave equa­
tions of higher spin leads to extensive complexities 
as the spin increases. For this reason, an IBM 7090 
computer was programmed for computation of the 
higher-spin equations. The computation was carried 
out up to k = 20, corresponding to spin 10. Only 
results for lower spins are given here since the coef­
ficients start to run up into six integers. Table I 
indicates the structure of the wave equations for 
spin :::; 4. 

Thus, we have succeeded in constructing a general 
higher-spin covariant wave equation, with no re­
dundant components for the wavefunction. That 
these equations are covariant follows directly from 
their construction from the spin-! Dirac equation. 
We regard these equations as the natural generaliza­
tion of the Dirac equation, and the 28 + 1 component 
entity Z as the natural generalization of the Dirac 
wavefunction. 

We give an explicit proof of the covariance of the 
general equation, Eq. (4.7), under spatial rotations. 
Under rotation, 

p~p + (Ox p), 
ZA ~ZA _ i(S.O)ABZB. 

The functions T. will not change, since they de­
pend only on p2 and E. Thus, we have for covariance 

1+1 [ J. ~To _Pa {(S.p)O-I(S.OXp) + ... 
• -0 E 

+ (S· 0 xp)(S·p)H - i(S·p)O(S· O)}Z = o. 
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Now from the angular-momentum commutation 
relations, we have 

+ i[(Sp)", (SO)] = (S·p),,-ICS· 0 Xp) + ... 
+ (S.O Xp)(S.p)·-1 

and, therefore, we obtain 

(S'O>[% T.(-;a)"csP)"]z = 0, 

and the general equation is indeed covariant under 
spatial rotations. 

The problem of proving covariance under the 
Lorentz transformations is much more complex. One 
must make use of explicit form of the (28 + 1) by 
(28 + 1) S matrices for each spin 8; For example, 

8 =!: {(S·a), (S·b)J+ = !(a·b). 

In addition, the quantities T" will also change, 
and the interrelationships among them, expressed 
by their dependence on the Cj and the recursion 
relations of the C;, will be involved in the proof. 

The adjoint operator for the first three cases is 
given by 

~l(P) = P2'l:i(P)P2 

~I(P) = P2'l:1(P)P2 

~i(P) = p2'l:t(P)P2 

and we conjecture that this is true in general. 
From the adjoint operator we can define the 

solution of the plane-wave problem; i.e., the solution 
of 'l:;B(p)ZB(p) = 0 is then ZB(p) = ~BC(p)XC, 
where XC is one of a set of 2(28 + 1) arbitrary 
2(28 + 1) component vectors. We illustrate for 
8 = t: 

'l:tB(P)ZB = [2Pa(S·p) - E + mpI]A.BZB(p) = 0, 

:. ZB(P) = [2Pa(S.p) + E + mpI]BCxC. 

There are four solutions to the equation. If we 
take as our XC the set of four constant vectors with 1 
in successive rows, then the four solutions will be­
come the four columns of the array 

p3 + E pi _ ip2 

pI + ip2 _p8 + E 

m o 

m o 
o m 

Om-pI _ ip2 p3 + E 

(aside from a normalization factor), 
We note that each equation contains the "germ" 

of the lower-spin equations. We illustrate this idea 
for 8 = i and 8 = 2. 

(a) 8 = I: 
We may write the 8 = i equation in the form 

(S·p)2 - (1)p2 = (!)(2PaE + imp2) 

X [2(S.p) - PsE + imp2]' 

Now the 8 = i equation obeys 

(S'PY - ip2 = 0 

2(S·p) - PaE + imp2 = 0, 

(4.8) 

so it a fortiori obeys the 8 = ! equation. We may 
also write Eq. (4.8) as 

[3(E - mpI) - 2p3(S,P)] 

X [(E - mpI) - 2p3(S,P)] = o. 
(b) 8 = 2: 

The wave equation can be written 

(S.p)3 _ p2(S.p) 

or 

= !Eps[2(S·p)2 - 2PaE(S·p) + m2(1 - PI)] 

- im2[(1 + PI)(S,P) - EPa(1 - PI)] 

[2E - Pa(S·p)][m2(1 - PI) - 2Epa(S,p) + 2(Sp)2] 

+ 4m2(1 - PI)[E - Pa(Sp)] = O. 

The spin-l particle obeys 

(Sp)3 = p2(Sp), 

2(Sp)2 - 2paE(Sp) + m2 (1 - PI) = 0, (4.9) 

(1 + PI)(Sp) - EPa(1 - PI) = O. (4.10) 

Equation (4.10) follows from Eq. (4.9) as follows 

2p2(S.p) = 2(S.p)3 = 2PaE (S.p)2 - m2(1 - PI)(S,P) 

= PaE[2PaE(S·p) - m2 (1 - PI)] - m2 (1 - PI)(S,P) 

:. 2(S·p)m2 
- m2EPa(1 - PI) 

or 

+ m2 (1 - PI)(S,P) = 0 

:. (1 + PI)(S,P) - EPa(1 - PI) = 0 

(1 - PI)[E - Pa(S,p)] = O. 

Thus the spin-l particle obeys the spin-2 equation. 
In general the 8 = integer (half-integer) particle will 
obey all higher-integer (half-integer) equations. 

The integer-spin equations cannot be solved for E 
since the integer-spin S matrices are singular. The 
half-integer spin equations can be solved for E and 
yield for the first two cases: 
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(a) spin! 

(b) spin! 

E = Ptm + 2Pa(Sp) - f[(Spy - tp2] 

We require that the infinitesimal generators cor­
responding to displacement yield P as eigenvalue: 

PI' 1m, 8; P, a) = PI' 1m, 8; P, a) 

PI' = (PI' X 1) + (1 X pJIo); 

X [m2 + 4p2r l[3mpl + 4Pa(S,p)]. 80 

The half-integral spin wave equations can be 
written in the form: 

(8 =!) [CE - mpI) + S] = 0 £ == -2pa(S,p) 

(8 =!) [3(E - mpI) + S][(E - mpI) + S] = 0 

(8 = j) [5(E - mpI) + S][3(E - mpI) + S] 

X [CE - mpI) + S] = O. 

We coniecture that this is true in general, and have 
therefore for the general wave equation of spin r/2 
(r = odd integer) 

r-1 

II [(2t + 1)(E - mpI) + £] = 0 
'-0 

(In proper order). 

(A corresponding expression for integer spin does 
not seem to exist.) 

V. COMMENTS ON THE SYNTHESIS 

There is an at first puzzling aspect of this synthesis. 
We seem to be combining in a sense k mass-m, spin-! 
particles, to get a particle, again of mass m, and 
of spin k/2, whereas we might expect the composite 
particle to have mass km. We can of course ignore 

Now 

PJIopJIo = (1 X pI' + pI' X 1)(1 X pp + PI' X 1) 

= (pJlopl') X 1 + 1 X (P"'pp) + 2(P'" X p",), 

so 

m~ + m: + 2(PIP2) = m2 

This simplest solution to this problem is to take 

and our state vectors are therefore taken to be 
Clebsch-Gordon combinations of state vectors 
evaluated at 

PI = (mt/m)p 

i.e., for 8 = 1: 

= (A I aI(2)CPa,(mt , (mdm)p)CPa.(ma, (ma/m)p). 

Now the Dirac equation for cp(m1 , p) is 

Ecp = (d'p)cp + ml'l/ 

and, therefore, the equation governing 

is 

the process whereby we obtained Eq. (4.7), and 
simply regard it as given. Then proving that it 
represents a particle of mass m and spin 8 = k /2 
would involve (a) showing the existence of an adjoint 
operator ~. such that we have m2 = E2 - p2; (b) 
showing the covariance of Eq. (4.7) under the trans­
formations, Eqs. (4.1) and (4.2), of rotation and the 

or 
Lorentz transformations. Nothing in principle, 
except algebraic complexities, would prevent this 
course. 

We consider instead the mass paradox. Consider a 
state vector which represents a particle of mass m 
and spin 8, with momentum P (a represents the spin 
coordinate: a = -8, ... , +8) 

1m, 8; p, a). 

Consider the problem of combining two such 
states to form a state of mass m and spin 8: 

1m, 8; p, a) = J d4
pI J ~P2(818~ 1 8 ta 182( 2) 

X f(PI, P2) Im181; PIal) Im282; Pl( 2)' 

This is now the reason why our formalism works. 
We are working with Dirac wavefunctions of mass m1 

but evaluated at (ml/m)p. Thus, it is true that the 
wavefunction cP obeys the Dirac equation for mass 
ml , but the quantities we actually use are cp«mJm)p) 
which obeys the Dirac equation for mass m. 

Weare therefore combining a particle of mass m1 

and a particle of mass m2 (m = mt + m2), each with 
spin ! to obtain a particle of mass m and spin L 
Likewise for the general case, we combine k particles 
of mass m.(i = 1, ... , k) where ~)n m. = m. 

A clearer view of this process may be had by going 
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to the coordinate space representation: 

ZA(m, p) 

= (A I a1a2)cp".(m1, (mdm)p)cp ... (m2' (m2/m)p). 

Define 

Then 

cp,,/(x) == f d4
pe-i(PZ)cP"j(p)j 

ZA(X) = f d4pe-i(PZ) ZA(P), 

ZA(X) = (A I a1a2)(2'nT4 

X (:2Y f d4YCPa.(X + : y)cpa.(X - : y). 

Thus the coordinate state vector at x is a nonlocal 
combination of CPa. (x) and CPa. (x) with weighting 
distance dependent on the masses involved. 

VI. CONCLUSION 

We have shown how to synthesize wave equations 
for particles of arbitrary spin, with no redundant 
components in the wave equation. The Dirac equa­
tion is the first of these equations and the vector 
meson equation (in terms of the field strengths, not 
the potential) constitutes the natural generalization 
of the Dirac equation to spin 1: higher-spin equations 
involve higher powers of derivatives, when con­
sidered in the context of a local field theory. The 
space and time dependence enter the structure of the 
equations in an unsymmetrical way, but they are 
nevertheless covariant, since space-time symmetriza­
tion is sufficient for covariance, but not necessary. 

APPENDIX 
We define 

C'; == 4i (-1)i+1f}") 

and the recursion relation Eq. (4.3a) becomes 
(~ == +1, C; = 0, r ~ 2JJ 

C';+1 = C'; + n(k - n + 1)C';:~. 
The solution for j = 1,2 is 

C~ = k(~) - 2(~) 

c; = (3e - 6k)(~) + (24 - 20k)(~) + 40(~) 
which suggests a general solution of the form 

C';= ± t A~!)k·(.n ) 
r-O .-0 3J - r 

= ± ±A~!)k·(.n ). 
.-0 r-. 31 - r 

In fact, this obeys the recursion relations, pro­
vided we have 

A~!) = - (3j - 2 - r)(3j - 1 - r)(A~!-ll + A~~~~!) 
+ (3j - r - I)A~~~~!_l' 

A few values: 
A(O) 

00 = 1 A (1) 
00 = -2 A(2) 

00 = 40 A(2) 
20 =0 

A(l) 
10 =0 A(2) 

10 = 24 A(2) 
22 = 3. 

A (1) 
11 =0 A(2) 

11 -20 
A(2) 

21 -6 

In practice, it is more convenient to use the Ci 
directly, and compute the C7 arrays for each value 
of k separately. This was done for the computation 
of the functions F~l) and F~2) of Sec. IV. 
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Position and Intrinsic Spin Operators in Quantum Theory* 
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The problem of defining position and intrinsic spin operators in terms of the generators of the 
inhomogeneous Lorentz group is considered. These operators are taken to have the properties usually 
attributed to them in nonrelativistic quantum theory: their commutation relations must have the 
commonly accepted form. These commutation relations are then shown to define the intrinsic spin 
uniquely. The position operator is shown to be also essentially uniquely determined. Explicit forms 
of the spin and position operators for some special representations are exhibited. The relation of these 
operators to the spin and position operators of the spin-i Dirac theory in the Foldy-Wouthuysen 
representation is considered. An Appendix gives a heuristic derivation of the spin operator. 

1. INTRODUCTION 

THE concept of position and intrinsic spin opera­
tors in quantum theory has been considered 

in various aspects.1 In this paper, we show that 
assuming some requirements considered as desirable 
for these operators leads to an essentially unique 
determination of them in terms of the generators 
of the inhomogeneous Lorentz group (ILG). 

For the special case of 8 = ! we consider the rela­
tion between the Foldy-Wouthuysen (FW) position 
and spin operators2 and the operators considered 
in this paper. 

I. THE GENERATORS FOR THE INHOMOGENEOUS 
LORENTZ GROUP 

The generators of the ILG3 are determined by the 
unitary transformations corresponding to the in­
finitesimal Lorentz transformations. We have 

corresponding to 

U = 1 - iwJ"M~. - if~P~ 

[metric: (1, -1, -1, -1), XO = t, a"b" = aObo - a· b]. 
The communication relations obeyed by the 

generators are 

• This work was carried out as a part of the Lockheed 
Independent Research Program. 

1 T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 
400 (1949); M. H. L. Pryce, Proc. Roy. Soc. (London) A195, 
62 (1948). 

2 L. L. Foldy and S. A. W outhuysen, Phys. Rev. 78, 29 
(1950). 

'E. P. Wigner, Am. Math. 40, 149 (1939); E. P. Wigner 
and V. Bargmann, Proc. Nat!. Acad. Sci. U. S. 34, 211 (1948). 
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We now define 

Then 

Ml = M 23 , etc. 

N' = M oi , 

[M', Mi] = - [N', N i ] = iE'ikM·, 

[M', N i ] = ieiikNk, 

[M i
, E) = 0, [N', E) = iP', 

[M', P'] = iEiik, [N', pi] = iaiiE. 

(1.1) 

We concern ourselves in this paper with the repre­
sentations for real, nonzero mass: the eigenvalues of 
P"P" are greater than zero. 

n. REQUIREMENTS ON THE INTRINSIC SPIN 
OPERATOR AND THE POSITION OPERATOR 

We want to define an intrinsic spin operator S 
and a position operator Q with the following 
properties: 

[Q' ,E] = ipiE-1 == iv', (2.1) 

[Q'. Pi] = iOii. (2.2) 

[Q', Qi] = 0, (2.3) 

[S', Qi] = 0, (2.4) 

[So, P") = 0, (2.5) 

[Si, Si) = iE'ik Sk. (2.6) 

[S', Mi] = iEiikSk
, (2.7) 

[Qi, Mi] = iEiikQk. (2.8) 

Equation (2.1) expresses the requirement that the 
commutator of position operator with the energy 
is the velocity PIE. Equations (2.2) and (2.3) are 
the usually required commutation relations of posi­
tion and momentum, and position with itself. Equa-
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tions (2.4) and (2.5) express the commutation of 
intrinsic spin with position and 4-momentum. Equa­
tion (2.6) is the desired property of an intrinsic 
spin operator and Eqs. (2.7) and (2.8) express the 
requirement that 5 and Q are 3-vectors under spatial 
rotations. 

In addition we require that the operator of total 
angular momentum be the sum of an orbital and an 
intrinsic part: 

M = Q xP + 5. (2.9) 

These requirements differ from those of a recent 
paper· on the position operator, where Eqs. (2.1) 
and (2.9) are not required, but the requirement 

[Q',N i ] = !{Qi[Q',E] + [Q',E]Qi} 

is imposed. These differing requirements lead to dif­
ferent formulations for the position operators, which 
however agree in the case of the FW position opera­
tor for spin! (see Sec. VII). 

m. THE mTRINSIC SPIN OPERATOR 

We must express 5 as some combination of the 
basic operators of the ILG: P, E, M, N. We have 
from Eq. (2.6) that the highest power of M or N 
that occurs in the expression for 5 is 1. (In the fol­
lowing the order of the operators (P2

, M, N, etc.) 
must be considered; for example, [N, p 2

] = 2ipop ¢ 

0.) 
Since we require that 5 be a 3-vector under spatial 

rotations, Eq. (2.7), we must therefore write 5 in 
the form 

5 = AM + BN + CP + DP x M + GP x N, (3.1) 

where A, B, C, D, and G are three-dimensional 
scalars. Consideration of the powers of M, N shows 
that A, B, D, G are operators depending only on p2 
and E, and C must have the form 

C = C1 + (P·M)C2 + (P·N)Ca , 

where C1 .2.8 are functions of p 2 and E. 
We now require that [from Eq. (2.5)] 

[5, E] = 0, [5, P] = 0, 

which implies B = - C aP2, and 

o = [8', pi] = i(A - GE)eiikpk 

(3.2) 

+ i(BE + Dp2)Oii + i(CaE - D)P'P\ 

therefore 

A = GE, 

'T. F. Jordan and N. Mukunda, Phys. Rev. 132, 1842 
(1963). 

and so 

BE + Dp2 = 0, 

CaE = D = -BE/P2
, 

5 = A[M + E- 1(p x N)] 

+ B[N - (P2)-I(p.N)P - E(P2)-I(P xM)] 

+ [C1 + (P·M)C2]P = 5*. 

We define (* indicates Hermitian adjoint operator). 

a = a* = M + E- 1(P xN), 

~ = ~* = N - (P2)-I(P.N)P 

- E(P2)-1(P xM) = E(p2)-l(P Xa), 

"( = 2(N - M)[1 + m2(p2)-1] 

+ (P xM)(2E/p2
) + P(P·M)(m2/p4

), 

then 

a'~=O, p·~=O, P·a = P·M, 

[a, pI'] = [~, r] = 0, 

[a', ail = ie'ik[ak 
- E-2P\p.M»), 

[a', ,8i] = i[E-1piM' + m2E-1(p2)-l oii(p.M) 

and therefore 

5 = Aa + B~ + [C1 + (P·M)C2 ]P. 

We now impose the commutation relations, Eq. (2.6), 
for the 5 and obtain 

A2[ak _ E-2P k(p.M)] 

+ AB[ _,8k - E-1(P XM)k] + BC2P
2,8k 

+ AC2[p2ak - (a.p)pk] + B2"l 
= Aak + B,8k + (C1 + (P.M)C2)P. (3.3) 

Taking the product with p k and summing, we have 

(P.M)m2A 2/B + B2[2(P.N)(1 + m2/p2
) 

- 2(P.M) - m2(P·M)/P2
] 

= A(P·M) + (C1 + (p·M)C2)P
2

• 

Since A, B only involve p 2 and E, we must therefore 
have 

C1 = B = 0 A 2m2/E2 = A + P 2C2. 

Then Eq. (3.3) shows that 

A2[ak - E- 2Pk(p·M)] + AC2[p 2ak - (p·M)P] 

= Aak + C2(P·M)pk 
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or 

A2 + AC2P
2 = A, 

A 2 + AC2E
2 = -C2E2, 

and therefore 

A = ±(E/m) , 

C2 = -1/[m(m ± E)]. 

Our expression for S is therefore determined by 
its commutation relations and is 

S = (E/m)(M + E-\P x N» 

- P«P·M)/[m(m + E)]), 

S = (-E/m)(M + E-\P x N» 

- P«P·M)/[m(m - E)]). 

(3.4) 

The two expressions are related by E --t - E, 
N --t -N. (The commutation relations of the ILG 
are unchanged by this transformation: it corres­
ponds to time reversal. Space inversion corresponds 
to P --t -P, N --t -N and leaves S unchanged.) 

We have therefore derived a unique (up to time 
reversal) expression for the intrinsic angular mo­
mentum from the commutation rules of the ILG. 
A heuristic derivation is given in the Appendix. 

We have from the structure of S: 

[Si, N i ] = i(m + E)-I(piSi - 8ii (P.M», 

which indicates that S does not transform as the 
first three components of a 4-vector under Lorentz 
transformations, since the condition that a 4-com­
ponent entity, aiJ

, transform as a 4-vector is 

[M i
, aO] = 0, 

[N i
, aO] = ia i

• 

IV. THE POSITION OPERATOR 

(3.5) 

We now want to write [in agreement with our 
requirement, Eq. (2.9)], the total angular momentum 
M as the sum of two parts, an "orbital" and an 
"intrinsic" : 

M = QxP + S. (4.1) 

By insertion of the expression for S we see that 
this determines Q up to a term PF 

mQ = -em + E)-lp xM + N + mPF, (4.2) 

where F is some operator, not necessarily commuting 
with P. 

We want Q to have the commutation relations 
indicated in Sec. II and we take these in order. We 

have from Eqs. (2.1) and (2.2) 

m[F, E] = i(mFTI - 1), (4.3) 

whereas Eq. (2.4) implies 

lSi, F] = O. (4.4) 

Equation (2.3) gives an expression of some com­
plexity. We consider first the equations resulting 
from Eqs. (4.3) and (4.4). From Eq. (4.3) we see 
that F must be linear in N (this follows from the 
commutation relations of E and N). Since Q must 
be a 3-vector under spatial rotations, the opera­
tor F must be a (three-dimensional) scalar, and 
must be formed of p2, E, P·N. It however cannot 
have terms of the type P·M, since this would con­
tradict Eq. (4.4). So the operator F must be of the 
form 

F = X I(P2
, E)·(P·N) + X 2(P2

, E). 

Then Eq. (4.3) determines Xl: 

Xl = -(mE)-I(m + E)-I 

and X 2 is still undetermined. 
We now require that Q be a Hermitian operator: 

Q* = Q, and this will determine the imaginary 
part of X 2 : 

Q = -m-\m + E)-lp xM + m-IN 

+ P[ -(mE)-\m + E)-IP.N] - i(2E2)-lP + PX~, 
where X~ is real and undetermined. 

We may rewrite Q as 

Q = -E-\m + E)-I(P x S) + E-IN 

- (i/2E2)P + PX:. (4.5) 

We have not as yet considered the commutation 
relations for the components of Q, Eq. (2.3). 

We may avoid tedious algebra by writing: 

N = EQ + (m + E)-I(P X S) + i(2E)- lp - EPX: 

and substituting this in the commutation relations 
for N. We see then that Eq. (1.1) can only be true 
if [Q\ Qi] = 0 and X~ is arbitrary. 

Thus we have determined a position operator with 
all the desired properties, and it is unique up to an 
additive term: PX~. It is simplest to set this term 
equal to zero: X~ = O. 

We have 

[Qi, N i ] = iE-IQipi + im(m + E)-IE- l Sk 

+ iE-l(m + E)-2(p. S)Pk 

- i(m + E)-2E(P x S)ipi 

+ (2E3
) l(pipi + E28'i) (4.6) 
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showing that Q' does not transform as the first VI. EXPLICIT FORMS FOR INTRINSIC ANGULAR 
MOMENTUM AND POSITION OPERATORS IN SOME 

three components of a 4-vector. SPECIAL REPRESENTATIONS OF THE ILG 

V. SPIN AND POSITION IN A GENERAL 
REPRESENTATION OF ILG 

In general, the generators M, N are expressed as 
follows (in a representation space for which P,. is 
diagonal) 

M = -~]> xVp + M s , 

Ns = iEVp + N s, 

where M., N. represent the "spin" part of the repre­
sentation. 

Substituting in our expressions for 8 and Q we 
have 

m8 = -(m+E)-IPx(PxMs)+mMs+PxNs , 

= EMs + P x N s - (m + E)-lp(P.Ms), (5.1) 

Q = (iV p - (i/2E2 )P) 

+ (l/m)[Ns - (m + E)-lp xMs 

(5.2) 

Canonical Representation 

In the canonical representation,5 where we have 
(for spin 8) 

M. = J, 
(6.1) 

N. = -em + E)-I(J xP) 

[the J's are the usual (28 + 1) by (28 + 1) dimen­
sional angular momentum matrices], the intrinsic 
angular momentum and position operators are 

8 = J; 

Helicity Representation 

In the helicity representation [ea is the unit 
vector along the 3-axis, n is a unit vector in the 
direction of P, and e2 == (ea X n)/(1 - n~)i]. 

M. = (ea + n)Ja/(l + na) 

N. = [(1 - n~)-i][ -eamJ2/P + nnamJ2/P 

+ e2 { -m(J ·n) + namJ2 - E(1 - na)Ja}P-IJ. 

The helicity representation is useful, because the 
The action of the generator on a state function helicity is diagonal in the usual representation for 

Ip) is the J a matrix: 

Ip) -7 (1 - ~M·O) Ip), 

= (1 - OXP'Vp - ~Ms'O) Ip), 

Ip) -7 (1 - iN ·0) Ip) = (1 + EO· V p - iNs'O) Ip), 

for an infinitesimal spatial rotation and Lorentz 
transformation, respectively. 

If we go to a new representation of ILG: 

Ip)' == U(P) Ip), 

then we have [U(p) = unitaryJ 

1 - iM'·O = U(P)[l - ~M'6]U-I(P'), 

1 - iN'·O = U(P)[1 - iN . O]U-\P') , 

and therefore 

O·M~ = i[U(P)U-I(P - 0 xP) - 1] 

+ U(P)(Ms' O)U-I(P), 

O·N~ = i[U(P)U-\P + OE) - IJ 

+ U(P)(N •• 0) U-I(P). 

Also 

8' = U8U- 1
• 

(M·P) = J a IPI == JaP. 

It is convenient to use the set of axes (el, e2 , ea) 
instead of (n, e2, ea), where el = e2 x ea. Then 

E (1 - na)i 
N. = -p 1 + na J ae2 

+ ; (eJ2 - e2J I - G ~ ::YeaJ2) , 

M. = (ea + elG ~ ::Y)Ja, 

8 = el[(ea'n)JI + (1 - n~)iJa] 

+ e2J 2 + ea[(ea·n)Ja - J I (1 - n~i], 

8 2 
= J~ + J~ + J~, 

and the position operator is 

Q = iVp + [eIJ2[ na - ;- (1 + na) ] 
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VB. RELATION TO THE FW EXPRESSIONS 
FOR SPIN AND POSITION 

We define a four-component entity for spin-! by 
defining 

(7.1) 

in terms of the two-component state vectors: 
Ip, pO; m), where w = +(lmI2 + p2)t 

Then we have for the canonical representation 
of the ILG [see Eq. (6.1)]: 

M. =], (7.1a) 
N. = - [J xP/(lml + w)]Pa. 

The "wave equation" obeyed by the four-com­
ponent entity, Eq. (7.1), is then 

Ex = WP3X. (7.2) 

The FW transformation2 is given in this approach 
by 

U(P) == 2-t [(a + bd'p) - ip2(a - bd'p)] 

= exp (i>'P2d'P) exp (-ip27r/4) , 

where 

cos >.p = a, 

and we define 

if;(P) = U(P) ·x(P). 

(7.3) 

( 1 . . 1 p) + (1 . = - 2" ~P3d - ~ 2E 2E ~P3d 

Pld xP ) 
- 2E(lml + w) (E - Iml PI - P3 d' P), (7.5b) 

Operating on the wavefunction if; we see that 

N~if; = [-!iP3d + (i/2E)P]if; (7.6) 

and the operator N~ is Hermitian: N~* = N~. 
By defining a new if;, by 

if;] == wi if; , (7.7) 

we can eliminate the second term in Eq. (7.6) and 
have 

(7.8) 

which is the usual Dirac Lorentz transformation. 
This N~' is however not Hermitian, and the cor­

responding (1 - ~'N~" 8) is therefore not a unitary 
transformation. This is so since Eq. (7.7) is not 
unitary. 

From the canonical representation, Eq. (6.1), we 
have 

Q' = U(P)[iV" - (i/2E2)PJU-' (P). 

We may write this as (for some infinitesimal quan­
tity (J) 

8·Q' = i[U(P)·E-'·U-'(P + 8E) - BTl] 

- (i/2E2)P.8. 

Comparing this with Eq. (7.5), we have 

The wave equation satisfied by if; is found by Q' _ ...!.. _ wd xP + P2P(d'P) + 'V _ i P 
transforming Eq. (7.2) and is - P22w d 2w

2
(lml + w) ~"2C' 

Eif; = (Iml PI + Pad'p)if;, (7.3a) Likewise from Eq. (7.1a) 

which is the Dirac equation when considered in the 
context of a local field theory. 

To determine the operators M!, N~ which gene­
rate the ILG when acting on if;, we must use 

U(p)U-I(P - 8 xp) 

U(P)-I(P + 8E). 

For spatial rotations we obtain 

and for Lorentz transformations we have 

N' = -PI(dXp) _ (dxp)E + P2Ed 
• 2(lml + w) 2w(lml + w) 2w 

P2(d'PJE 
2w2(lml + w) P. 

(7.4) 

(7.5a) 

S' = U(PHdU-'(P) 

__ P2d xP d'P l.!!!l 
- 2w + p 2w(lml + w) + 2w d. 

These are the usual spin intrinsic angular momentum 
and position generators of the FW transformation. 

They cannot be obtained directly from Eqs. (5.1) 
and (5.2) by SUbstituting Eq. (7.8) since it is not 
Hermitian. They can be obtained by substituting 
Eqs. (7.5a) and (7.5b) directly in Eqs. (5.1) and 
(5.2), and making use of the fact that the mass 
operator m is such that mx = Iml P3X and mif; = 
Iml E/wif; plus the wave equation, Eq. (7.3a). 

VDI. CONCLUSIONS 

We have demonstrated that from the structure of 
the operators which define the transformations of 
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the inhomogeneous Lorentz group, there follows a 
unique intrinsic spin and position operator, with the 
properties usually accepted as desirable. 

In terms of the generators of the ILG these opera­
tors are 

mS = E(M + E-1p x N) - P(P·M)(m + E)-l, 

mQ = -em + E)-lpxM + N - PE-1 

X (m + E)-\P.N) - im(2F!)-lP + imV p. 

APPENDIX 

The 4-vector yP is defined as follows (E
0l23 

-E0123 = 1) 

and therefore 

yO = -(P.M), 

Y = -EM -PxN. 

The eigenvalues of the operators pPpp and y"yp 
define the representation space in which the state 
vectors are defined. 

In the rest system, p' = 0, (denoted by primes), 
y' = -mM. 

We now heuristically define the intrinsic angular 
momentum operator as M in the rest system, since 
it is whatever angular momentum is left over after 
the motion has been subtracted. 

Thus we define S == -(l/m)y'. 
Now an arbitrary 3-vector, a, in a system with 

momentum p, has the value a' in the rest system 
(p' = 0), where 

a' = a - p[(ap) + maoJlm(m + E). 

Therefore 

y' = -EM - P x N - P[ -(P·M)JI(m + E) 

== -mS 

and we can therefore define the intrinsic angular 
momentum as 

S = m-1EM - m-1(m+E)-lP(p.M) + m-1(p xN) 

for any system. 
This expression is that derived by a more formal 

argument in Sec. III. 
We have for the value of the "spin invariant" 

yPyp = _(PPpp)S2 = _m2S2. 
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On the Number of Bound States of a Given Interaction 

GIAN CARLO GmRARDI AND ALBERTO RIMINI 

Istituto di Fisica dell'Universitd, Trieste, Italy 
(Received 21 July 1964) 

A method ~or deri'?ng bounds. to the number of bou.nd states of a given interaction is built up. 
The class of mteractIOns for whICh the method works mcludes the nonlocal interactions besides the 
local ones. ProbleInB with many channels and Bpin-dependent interactions can also be treated. Some 
bounds are explicitly given. 

1. INTRODUCTION 

I T is known that the system consisting of a particle 
in a local field of force admits only a finite number 

of bound states provided that an appropriate integral 
involving the potential is convergent. In fact Barg­
mann 1 has derived in the case of a rotationally 
invariant potential VCr), the inequality 

1 1'" nl < 2l + 1 0 drr WCr)J, (1) 

where nl is the number of bound states in the lth 
partial wave (for fixed magnetic quantum number). 
Schwinger,2 together with a new derivation of the 
result of Bargmann, has given for the total number N 
of bound states, in the general case of a local potential 
VCr), the upper bound 

N < -1-1f dB dB' V(->(r) V(-> (r') . 
(411/ r r Jr _ r'J2 (2) 

Here V(->(r) is the negative part of VCr) defined by 

V(->(r) = VCr) for r such that VCr) < 0, 

o for r such that VCr) ~ O. 

Moreover, Schwinger has shown how to obtain 
bounds in the case of the presence of the tensor 
interaction. 

The above mentioned methods are based on the 
introduction, beside the given interaction V, of a 
comparison interaction W which is negative definite 
and satisfies the inequality 

(!p, W!p) ~ (!p, VIp) 

for any state vector !p. The comparison interaction 
W has certainly at least as many bound states as V, 
and is introduced in order to deal with an interaction 
such that any increase of its strength causes a lower­
ing of the energies of the bound states and does not 
lessen their number. The determination of the com-

1 V. Bargmann, Proc. Natl. Acad. Sci. U. S. 38, 961 (1952). 
'J. Schwinger, Proc. Natl. Acad. Sci. U. S. 47, 122 (1961). 
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parison interaction, requires in general, the diag­
onalization of the given interaction V. This makes 
such methods not suitable for the case of interactions 
which are not given in diagonal form. This is the 
case for nonlocal forces or for many-channel prob­
lems. Spin-dependent interactions are also difficult 
to deal with if they give rise to matrices of high rank. 

In this paper a method is builded up for obtaining 
bounds on the number of bound states which avoids 
the introduction of the negative definite comparison 
interaction Wand works directly on V. The class 
of interactions for which the method works is large 
enough to include all the above-mentioned difficult 
cases besides the local one. The method is based on 
the fact that, under fairly general conditions, the 
energies of the bound states decrease when the 
strength of the interaction is increased, also if the 
interaction itself is not a negative definite operator. 

2. DERIVATION OF THE BOUNDS ON THE 
NUMBER OF BOUND STATES 

We first consider the case of a spinless particle. 
Let the representative of the interaction be V (p, p') 
[which becomes V(p - p') in the local easel. Then, 
in suitable units, the Schrodinger equation for 
negative energy states reads 

We introduce the equation 

which, defining X(p) = (p2 + k2)ty;(P), becomes 

X-1W)xW, p) 

- -J dB V(p, p') X(k2 ,) 
- p [(P2 + k2)(P/2 + k2)]t ,p. (4) 

The solutions of this equation for X = 1 correspond 
to the solutions of the original equation (3). We 
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assume that the integral values are increasing functions of _k2
• Note that 

this is equivalent to say that the increase of the 
A2(k2) -If d8 d3 I IV(p, p/)12 

- P P (p2 + k2)(P/2 + k2) (5) strength of the interaction lowers the energies of the 
bound state. This is proved, irrespectively of their 
negative definite character, for the local or nonlocal 
interactions for which the integral (5) exists. 

converges. Clearly it is a decreasing function of e. 
Equation (4) is an integral equation with a square 

integrable Hermitian kernel which depends on the 
parameter k2

• Its eigenvalues lie in the interval 
(-A(e), A(e» and form a denumerable sequence 
A~1(k2) whose only limit point is zero. It is proved in 
the Appendix that the eigenvalues and the eigen­
functions of Eq. (4), are continuous functions of k2

• 

In order to investigate the movement of the eigen­
values A~1(k2) when e is varied, let us take into 
account two values, k2 and k/2 , of the parameter k2. 
From Eq. (4) one has 

A~lW) I dBpX~(k2, P)(p: ! ~~2yX.(k/2, p) 

= - II d3p d3p'X~(k2, p) 

V(p, p') (p/2 + k/2)i 12 I 
X [(P2 + k2)(P/2 + k2)]t p/2 + k2 Xi(k ,p) 

A~1(k'2) I dSpX~W, P)(p: ! ~~2yXi(kI2, p) 

= _ II d3p d3p'X~(k2, P)(p: ! ~~2y 
X V(p, p') X (k /2 ') 

[(P2 + k/2)(P/2 + k'2)]t i ,p. 

Subtraction of the second of these equations from 
the first one gives 

[A~lW) - A~1(k'2)] 

X I d3pX~W, P)(:: ! ~~2yXi(kI2, p) 

- if d3 d3 'X*(k2) V(p, p') - - p Pi, P [(P2 + k2)(P/2 + k2)]t 

k /2 _ k2 

X [(P/2 + k2)(P/2 + k/2)]f X i(k'2 , p') 

= (k/2 _ k2)'\";"1(k2) I dB X~(k2, p)Xi(k
,2

, p) . 
'" P [(P2 + e)(p2 + k/2)]t 

If A (i?) = 1, there is no bound state of energy less 
than _f,2 since A~1(k2) < 1 for _k2 < _f,2. When 
_k2 is increased from _f,2 up to zero, the positive 
A~1(k2) increase (continuously), as it has just been 
shown. Therefore it follows that the number of 
bound states of Eq. (3) whose energy is less than an 
arbitrary fixed - P is equal to the number of eigen­
values A~l(P) which lie above 1. This number is 
less than :Ei A~2(P), i.e., the trace of the iterated 
kernel of Eq. (4). Therefore, for the total number N 
of bound states of an interaction whose momentum 
representative is V (p, p') one has the bound 

(7) 

Defining the Green operator G( _k2) as the operator 
whose momentum representation is 

53(p _ p/)j(P2 + k2) 

the inequality (7) can also be written 

N < Tr {[G(O)V?I. 

It is easy to construct interactions which approach 
the above limit as close as one wishes. In fact, taking 
into consideration a nonlocal attractive separable 
potential Yep, p') = -v(p)V(p/), the bound (7) 
becomes 

and, on the other hand, the condition 

I d3p V~<f) > 1 

is sufficient for the existence of the unique possible 
bound state of such an interaction.s 

For a local potential V(r) the bound (7) becomes, 
in the coordinate representation 

N < _1_ I d3 d3 I V(r)V(r/). 
(4'11-)2 r r Ir _ r / 12 (8) 

Since A~1(k2) and X.(k2, p) are continuous functions 
of e, one has, in the limit as k/2 ~ k2 

This bound differs from the bound (2) given by 
Schwinger in that it involves the potential itself 

(6) instead of its negative part V<-l (r). Note that the 
bound (8) may be better or worse than the bound (2) 

The eigenfunctions X i (k
2

, p) have been assumed to a G. C. Ghirardi and A. Rimini, J. Math. Phys. 5, 722 
be normalized. Eq. (6) shows that the positive eigen- (1961). 
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depending on the specific form of the potential. This 
is easily seen by considering a potential 

V(r) = aVc+)(r) + VC-)(r) , 

where VC+)(r) ;::: 0 and VC-)(r) :::; 0 and moreover 
for any value of r at least one of them is equal to 
zero. Then the bound (8) becomes 

1 2 If 3 3 I VC+)(r) VC+)(r/) 
N < (4-1I/ a d r d r Ir _ r / 12 

+ 2a _1_ If d3 d3 I VC+)(r)VH(r') 
(4'11'/ r r Ir _ r/12 

+ _1_ If d3 d3 I VH(r) vH 
(r/) • (9) 

(4'11'/ r r Ir _ r'1 2 

Since the coefficients of (i and a have opposite signs 
the contribution from the first two terms in Eq. (9) 
can be made positive or negative. 

3. BOUNDS IN SOME FURTHER SPECIAL CASES 

In this section we shall give explicitly the bounds 
obtained, following essentially the method of Sec. 2, 
in some further specific cases. These are the case of 
the lth partial wave for a rotationally invariant 
spin-independent potential and the case of a many 
two-body channels problem. Finally, as an example 
of the application of the method of Sec. 2 to a spin­
dependent case, we shall take into account a central 
plus tensor interaction. 

If one assumes a rotationally invariant spin-inde­
pendent interaction Yep, p', cos pp') it is possible to 
reduce the problem in the eigenmanifolds of the 
orbital angular momentum operator. The above pro­
cedure, applied to the eigenvalue equation for the 
lth partial wave 

P21/t1(P) + 1'" p,2 dp'V,(p, P')1/tI(P') = -k21/t1(P), 

gives for the number n, of the I-wave bound states, 
a part from the (21 + I)-fold degeneracy 

nl < L'" L'" dp dp' IV1(P, p')12. (10) 

In the preceding formulas we have put 

V1(P, p') = 2'l1" [:' d cos (J P1(cos O)V(P, p', cos 0). 

In the local case, the above bound becomes 

nl < L'" {' dr dr'V(r)V(r')g~(r, r /), (11) 

where 

(12) 

A rather crude estimate shows that the integral 
appearing in (11) is majorized by [2/(2l + 1)2] 
[f~ dr r W(r)lr'. 

If one is concerned with a problem with many 
two-body channels, the SchrOdinger equation reads 

(~+ Ea)1/ta(P) + ~ J d3
p'Va,,(P, p')1/t,,(P/) 

= E1/ta(P). 

In this equation p is the relative momentum of the 
two particles, E a is the energy of the ath threshold, 
JI... is the reduced mass in channel a. The evident 
generalization of the above arguments gives 

N < ~ J J d3
p d

3pl 

X lVa,,(p,p/)1 2 

(P2/2J1.a + Ea - El)(P2/2J1." + E" - E,) 
(13) 

for the total number N of bound states of energy 
less than E 1 • 

We come now to the case of a central plus tensor 
interaction 

V.(r) + V T(r)8'2 

8 - 3 (d,or)o(d2
or) ( ) 

'2 - 2 - d, 0 d2 • 
r 

The operator 8 12 is zero when acting on a singlet 
(8 = 0) state. In the triplet space 8 12 has the matrix 
representative 

L=J-I L=JL=J+I 

L=J-I 
-(J - 1) 

0 
6[J(J + 1)]1 

2J + 1 2J + 1 (14) 

L=J 0 2 0 

L=J+I 
~[J(J + 1)]1 

0 -(J + 2) 
2J + 1 2J + 1 

and does not couple the state 8 = 1, L = J with 
the remaining triplet states 8 = 1, L = J ± 1. One 
obtains immediately, for the numbers of bound states 
with J, J. fixed and, respectively, 8 = 0, 8 = 1 and 
parity (-1) J, and 8 = 1 and parity (_I)J+' 

n~J. < L'" L'" dr drIV.(r)V.(r/)g~(r, r'), 

n~J. < L'" i'" dr dr'[Ve(r) + 2V T(r)] 

X [Veer') + 2V T(r')]g~(r, r'), (15) 
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n~J. < L" 1"" dr dr' 

X L [Vc(r)8LL , + VT(r)S12(L, L')] 
LL' 

X [Vc(r')8L'L + V T(r')S12(L', L)]YL(r, r')YL,(r', r). 

The functions YL(r, r') are defined by Eq. (12). The 
matrix S12(L, L') is the 2 X 2 matrix obtained from 
Eq. (14) by taking out the middle row and column. 
The third inequality reads, in displayed form, 

n;J. < 11 dr dr'{Y~_l(r, r'{ V.(r)Vc(r') 

- 2~~ ~ !) [V.(r)VT(r') + V.(r')VT(r)] 

+ ~~~ ~ !~: V T(r) V T(r')] + Y~+l(r, r') 

X [v.(r)v.(r') - 2~~ ! ~) [V.(r)V T(r') 

+ Vc(r')VT(r)] + ~~~! i~: VT(r)VT(r')] 

72J(J + 1) 2( ')V ()V ( ')} + (2J _ I)(2J + 3) OJ r, r T r T r . 

Let X~;.(e), X1+(k2) be the greatest of the positive 
eigenvalues and the corresponding normalized eigen­
function of the kernel N W). Then one has 

J\;:~(k2) = (X1+(k2), N(k2)X1+(k2» = sup (rp, N(k')rp). 

In this equat~on "sup" denotes the least upper bound 
and rp runs over the whole set of the normalized 
square integrable functions. Introducing the step 
function 8(x) which is 0 for x < 0 and 1 for x 2 0, 
it results 

1J\;:~(k'2) - J\~~W)I = 8(J\~~W) - J\~~(k'2» 

X [(X1+(k2), NW)X1+(k2» 

- (X1+(k,2), N(k,2)X1+(k,2»] 

+ 8(J\~~(k'2) - J\~~W» 

X [(X1+(k'2), N(k,2)X1+(k,2» 

- (X1+(k2), NW)X1+(k2»] 

5 8(A~~(k2) - A;:~(k'2»(X1+(e), 

X [N(k2) - N(k,2)]X1+(k2» 

+ 8(A~~(k'2) - A~~W»(X1+(k'2), 

X [N(k,2) - N(k2)]X1+(k'2». 

The consideration following Eq. (12) shows that no Owing to Eq. (AI) this implies 
bound state can be present for sufficiently high lim A~1(k'2) = ,,;1W), (A2) 
values of J. ~"~k' 
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APPENDIX 

We show here the continuity with respect to the 
parameter e of the eigenvalues and eigenfunctions 
of Eq. (4). Writing 

N(k2
, p, p') = 

Yep, p') 

one has for any square integrable function rp, 

I(rp, [N(k,2) - N(k2)]rp)l:S IlrpW·IIN(k,2) - N(k2)11 

5 IlrpW IIN(e)lIlk'2k~ k
2

\ , 

i.e., the continuity of the first eigenvalue. 
From Eqs. (AI) and (A2) it follows 

lim (X1+(k,2), N(k2)X1+(k,2» = A~~(k2). (A3) 
'\:'I_k' 

Introducing the expansion 

X1+(k,2) = L ci(k,2)XiW), L: Ici (k,2W = 1 
i i 

and denoting by 8 the difference between ,,;:-~(e) 
and the eigenvalue nearest to it we have 

L ICi(k,2) 12 8 :s L: Ic,(k,2) 12 (}..~;'W) - }..~1(k2» 
' .. 1+ 

= A~~(k2) - (X1+(k,2), N(k2)X1+(k'2». 

Equation (A3) then implies that 

lim L: Ic i (k,2) 12 = O. 
-':'I_k l i;o!il+ 

Therefore, if the arbitrary phase of X1+(k,2) is chosen with obvious meaning of the symbols. This means 
that in such a way that C1+(k,2) is real and positive, one 

lim (cp, [N(k,2) - N(e)]cp) = 0, (AI) 
1:'1_,\:2 

even if rp depends on k,2, provided it is of bounded 
norm. 

has 

lim IIX1+(k'2) - X1+(e)w = lim IC1+(k" ) - 112 
i'lI_k ll 1:'''_1: 11 

= lim 1(1 - L: ICi(k'2)1~1 - 1\2 = O. 
Jr./L~A:1 ir'l+ 
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This means that the first eigenfunction is continuous. 
Taking into account the kernel 

V(p, p') 
[(P2 + e)(p'2 + k2)]t 

- A~:W)Xl+(k2, p)Xt+(k2, p'), 

whose greatest positive eigenvalue is the second 
positive eigenvalue of NCk2) one evidently has 

lim (rp, [N1(k '2
) - N1W)]rp) = O. 

k'2_k 2 

The continuity of the second eigenvalue and eigen­
function can then be established by means of the 

JOURNAL OF MATHEMATICAL PHYSICS 

same procedure used for the first ones. The repetition 
of the above argument proves the continuous de­
pendence on k2 of all the eigenvalues and eigen­
functions. 

Note added in proof: While this work was in course 
of publication, we noticed that its main ideas were 
already present in the paper on scattering problems 
by S. Weinberg in Phys. Rev. 131, 440 (1963). Our 
work, however, contains rigorous self-contained 
proofs which are not given in Weinberg's paper. 
Some questions concerning our specific problem and 
various particular formulas are also considered here. 
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As a means of determining the effects of a uniform but arbitrarily directed magnetic field on cylin­
drical and spherical wave propagation in a cold, homogeneous plasma, we regard the magnetic field 
as a small perturbation. Assuming an expansion for the electric and magnetic fields in powers of the 
parameter iwal w, where We is the static gyro frequency of the electron, we solve for the linear terms. 
This solution is carried out under the assumption that the fields are known for the limit of vanishing 
static magnetic field. 

The first-order theory is then applied to cylindrical and spherical systems. When the approximate 
solution for the axially magnetized column is compared with the exact result, agreement is obtained 
provided that the static magnetic field is weak, as expected. 

I. INTRODUCTION 

IN the following article, the results are presented 
of a theoretical investigation into certain aspects 

of microwave interaction with a bounded, homo­
geneous, gyroelectric plasma, i.e., a homogeneous 
plasma in which a uniform static magnetic field is 
maintained. It has been shown 1.2 that such a medium 
may be characterized, within the framework of a 
phenomenological theory, by a relative permeability 
equal to unity and a permittivity given by a second­
rank tensor. 

* Excerpted from the dissertation, "Microwave Inter­
action with Bounded Gyroelectric Plasmas," submitted in 
partial fulfillment of the requirements for the degree of 
Doctor of Philosophy at the California Institute of Tech­
nology, Pasadena, California. 

1 H. W. Nichols and J. C. Schelling, Bell System Tech. J. 
4, 215 (1925). 

2 C. H. Papas, itA Note Concerning a Gyroelectric Me­
dium," Tech. Report No.4, Antenna Laboratory, California 
Institute of Technol()gy (1954). Also see C. H. Papas, Theory 
of Electromagnetic Walle Propagation (McGraw-Hill Book 
Company, Inc., to be published), Chap. 6. 

Among boundary-value problems involving 
plasmas with cylindrical or spherical shape which 
are of interest here, only the axially magnetized 
cylinder is amenable to rigorous analysis.3

•
4 It is 

therefore of interest to search for approximate 
methods which permit the study of a broader class 
of problems. We deVelop one such method, applicable 
when the static field is "small," in a sense to be 
defined precisely later on. 

Since emphasis is placed on the solution of bound­
ary-value problems rather than on the detailed 
physics of the plasma-field interaction, discussion 
is confined to the collisionless case. In addition, it 
is assumed that the frequency of the electromagnetic 
field is high enough that the induced motion of 
positive ions may be neglected. Thus, the only effect 

3 P. M. Platzman and H. T. Ozaki, J. Appl. Phys. 31, 
1957 (1960). 

4 K. H. B. Wilhelmsson, J. Res. Nat!. Bur. Std. (U. S.), 
66D, 439 (1962). 
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This means that the first eigenfunction is continuous. 
Taking into account the kernel 

V(p, p') 
[(P2 + e)(p'2 + k2)]t 

- A~:W)Xl+(k2, p)Xt+(k2, p'), 

whose greatest positive eigenvalue is the second 
positive eigenvalue of NCk2) one evidently has 

lim (rp, [N1(k '2
) - N1W)]rp) = O. 

k'2_k 2 

The continuity of the second eigenvalue and eigen­
function can then be established by means of the 
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same procedure used for the first ones. The repetition 
of the above argument proves the continuous de­
pendence on k2 of all the eigenvalues and eigen­
functions. 

Note added in proof: While this work was in course 
of publication, we noticed that its main ideas were 
already present in the paper on scattering problems 
by S. Weinberg in Phys. Rev. 131, 440 (1963). Our 
work, however, contains rigorous self-contained 
proofs which are not given in Weinberg's paper. 
Some questions concerning our specific problem and 
various particular formulas are also considered here. 
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This solution is carried out under the assumption that the fields are known for the limit of vanishing 
static magnetic field. 

The first-order theory is then applied to cylindrical and spherical systems. When the approximate 
solution for the axially magnetized column is compared with the exact result, agreement is obtained 
provided that the static magnetic field is weak, as expected. 

I. INTRODUCTION 

IN the following article, the results are presented 
of a theoretical investigation into certain aspects 

of microwave interaction with a bounded, homo­
geneous, gyroelectric plasma, i.e., a homogeneous 
plasma in which a uniform static magnetic field is 
maintained. It has been shown 1.2 that such a medium 
may be characterized, within the framework of a 
phenomenological theory, by a relative permeability 
equal to unity and a permittivity given by a second­
rank tensor. 

* Excerpted from the dissertation, "Microwave Inter­
action with Bounded Gyroelectric Plasmas," submitted in 
partial fulfillment of the requirements for the degree of 
Doctor of Philosophy at the California Institute of Tech­
nology, Pasadena, California. 

1 H. W. Nichols and J. C. Schelling, Bell System Tech. J. 
4, 215 (1925). 

2 C. H. Papas, itA Note Concerning a Gyroelectric Me­
dium," Tech. Report No.4, Antenna Laboratory, California 
Institute of Technol()gy (1954). Also see C. H. Papas, Theory 
of Electromagnetic Walle Propagation (McGraw-Hill Book 
Company, Inc., to be published), Chap. 6. 

Among boundary-value problems involving 
plasmas with cylindrical or spherical shape which 
are of interest here, only the axially magnetized 
cylinder is amenable to rigorous analysis.3

•
4 It is 

therefore of interest to search for approximate 
methods which permit the study of a broader class 
of problems. We deVelop one such method, applicable 
when the static field is "small," in a sense to be 
defined precisely later on. 

Since emphasis is placed on the solution of bound­
ary-value problems rather than on the detailed 
physics of the plasma-field interaction, discussion 
is confined to the collisionless case. In addition, it 
is assumed that the frequency of the electromagnetic 
field is high enough that the induced motion of 
positive ions may be neglected. Thus, the only effect 

3 P. M. Platzman and H. T. Ozaki, J. Appl. Phys. 31, 
1957 (1960). 

4 K. H. B. Wilhelmsson, J. Res. Nat!. Bur. Std. (U. S.), 
66D, 439 (1962). 
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of these heavier particles is to make the total average 
charge density equal to zero. 

Rationalized mks units and the harmonic time 
dependence e-''''' will be used. 

U. POWER-SERIES EXPANSION 
FOR THE nmLECTRlC TENSOR 

In this section, we derive an expansion for the 
dielectric tensor in powers of the parameter iwg / w, 

where w" is the electron gyrofrequency corresponding 
to the static magnetic field. The series is somewhat 
unconventional in that the terms are matrices rather 
than scalars. However, this presents no essentially 
mathematical difficulty, since the theory of func­
tions of a matrix is analogous in many respects 
to the corresponding theory for scalar variables. 

Maxwell's equations for a plasma are 

V xE = iw.uoH, (1) 
V xH = -iWEoE - Nev. 

In Eq. (1), .uo and Eo are the permeability and 
permittivity of vacuum and v is the average induced 
velocity of the electrons: of which there are assumed 
to be N per cubic meter. Since v will be found to be 
a linear vector function of E, it is convenient to 
write the second of Maxwell's equations as 

V xH = -iwt£, (2) 

thereby defining an effective dielectric tensor e. 
In order to derive the expansion for e, we examine 

the motion of electrons acted upon simultaneously 
by a harmonic electric field Ee-,,,,j and an arbitrarily 
directed static magnetic field BOeB. The symbol e 
denotes a unit vector, eB representing a unit vector 
in the direction of the static magnetic field. From 
Newton's law of motion and the Lorentz force equa­
tion we obtain the dyadic expression 

v = (e/iwm)[U - i(wg/w)eB x rlE, (3) 

where U is the unit dyad. We now regard the operator 
[U - i(wg/w)eB xr l as a function of the matrix 
i (wg/w)eB x, in analogy with the function (1 - S)-l 
of the scalar complex variable s = a + i{j. 

There exists a matrix-scalar correspondence prin­
ciple6 which states that, if f(s) has the Taylor series 
expansion 

00 

f(s) = 2: a"s", (4) 
.. -0 

then the same function, but with a matrix 8 in 

place of the scalar s, will have the expansion, 
00 

£(8) = 2: a .. 8" , (5) ..-0 
which converges, provided that the eigenvalues of 
8 all lie inside the circle of convergence of Eq. (4). 
Since the circle of convergence of the series, which is 

00 

(1 - srI = 2: s", (6) 
,,-0 

is the unit circle centered about the origin, it 
follows that the representation 

(u-i;eBXrl = ~(i;eBXr (7) 

is valid provided that the eigenvalues of i(wg/w)eB x 
satisfy the inequality Ix,1 < 1 (i = 1, 2, 3). It is 
straightforward to show that these eigenvalues are 
Xl = 0, X2 = (Wg/W) , X3 = - (wg/w). The criterion 
for validity of Eq. (7) is thus that wg/w < 1, and 
it is assumed in what follows that this condition 
is satisfied. 

By substituting Eq. (7) into Eq. (3) and using 
the definition of e, we can show that the required 
expansion is 

e = {U - r ~ g"(eB x)"], (8) 

where we have used the notation 

E = Eo(1 - w!/w2), r = w!/(w2 - w!), 

g = iwg/w, w! = Ne2/mEo. 
(9) 

In the limit of vanishing static magnetic field 
Eq. (8) reduces to the well-known result for a 
collisionless isotropic plasma. 

It is straightforward to show that, in a coordinate 
system aligned with the z axis along eB, the rep­
resentation of Eq. (8) gives the same result as an 
element-by-element expansion of the conventional 
formula for e.2 However, Eq. (8) has the advantage 
of being a vector representation and is therefore 
valid in any coordinate system. 

m. PARTIAL FIELD EXPANSION 

Using the result of the previous section, we write 
Maxwell's equations inside the plasma as 

V xE = iw.uoH, 

V xH = -iweE + iwEr[t g"(eB X)"]E. 
.. -1 

(10) 

& F. R. Gantmacher, Theory of Matrices (Chelsea Pub-
lishing Company, New York, 1959), Vol. 1, p. 113. We next assume expansions for the electric and 
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VACUUM 

FIG. 1. Boundary between 
plasma and vacuum. 

magnetic fields of the form 

(11) 

where E(m) and H(m, are referred to as the mth-order 
partial fields. Substituting Eq. (11) into Eq. (10) 
and equating powers of the expansion parameter 9, 
we conclude that the partial fields obey the follow­
ing equations: 

V xE(O) = iwp.oH(O) , 

V xH(O) = -iwtE(O), 

V xE t .. ) = iwp.oH t"', 

V xH('" = -iwEE(") 

,,-I 
+ iwEr E (eB x),,-mE(m), n> O. 

.. -0 

(12) 

The formulation in terms of partial fields differs 
from the conventional statement of Maxwell's equa­
tions for a gyroelectric plasma, both mathematically 
and physically. From a mathematical point of view, 
it represents a change from the problem of solving 
a pair of homogeneous partial differential equations 
which involve a tensor operator to the problem of 
solving an infinite sequence of inhomogeneous equa­
tions in which the source terms depend on solutions 
of lower order. Physically, we have introduced a 
description of the electromagnetic field inside the 
plasma as being composed of a sum of fields. These 
are arranged in a hierarchy of complexity in which 
the fields of lower order "interact» with the static 
magnetic field to produce those of higher order. 

The advantage of present formulation is that, if 
the static field is weak, the more complex fields may 
be ignored since they are of higher order in 9. In 
this work we consider in detail only the zero-order 
field which, as can be seen from Eq. (12), would 
exist if there were no static magnetic field, and the 
first order component which is linear in g. Thus, 
it is assumed that Bo is small enough so that terms 
of order (WIl/W)2 are negligible. 

IV. A NOTE ON BOUNDARY CONDITIONS 

In the following paragraphs, we consider problems 
which involve a boundary between a plasma and 
a vacuum, as in Fig. 1. According to Eq. (11), the 
fields inside the plasma will be given by 

E. = E~O) + gE?) + g2E12) + ... , 
(13) 

H. = H~o, + gH~n + g2H~21 + ... . 
Because of the boundary conditions, there must 
exist a corresponding field on the vacuum side of 
the interface, 

E. = E!O) + gE!ll + g2E!2) + ... , 
H. = H!O) + gH~ll + lH~2) + '" , 

(14) 

and by equating tangential components we obtain 
the result that 

(15) 

for all n. Hence, the boundary conditions must be 
satisfied at each step of the perturbation procedure. 
The physical interpretation is that the internal 
interactions between the fields of a given order and 
Bo produce waves which are partially transmitted 
and partially reflected at the plasma-vacuum 
boundary. 

V. ON THE CRITERIA FOR VALIDITY 
OF THE PERTURBATION EXPANSION 

In general, the solution to a physical or math­
ematical problem depends on several parameters, 
with the result that an asymptotic form is rarely 
uniformly valid. For example, the usual asymptotic 
formulas for Bessel functions with large argument 
do not apply when the order is of comparable size. 

It has been implied that the perturbation theory 
for gyroelectric plasmas is applicable, provided that 
the magnetic field is weak in the sense that w,'; W « 1. 
We now explore the conditions for validity more 
throughly in order to determine how the other 
parameters, namely the plasma frequency and· phys­
ical dimensions of the interaction zone, affect the 
convergence of the expansion of Eq. (11). 

Dependence on Plasma Frequency 

In order to determine the effect of plasma fre­
quency, we eliminate H(") in Eqs. (12) and obtain 
as the equation for E (n), n > 0, 

V xV xE(") - k2E(n) 
.. -1 

= -k2r E (eB x),,-mE{"'\ (16) 
m-O 

k being the wavenumber in the isotropic plasma 
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"'ClLOE)t. Using mathematical induction, we can show 
that any particular solution for the nth-order field 
(n > 0) will be of the form 

" E~") = :E r"'t;:) , (17) 
",-1 

where r = ",!/(",2 - Col!), so that in the expansion 
for E (,,) there will be a term proportional to tl. 
This parameter becomes large at frequencies close 
to the plasma frequency and we reason that here 
the expansion will converge poorly, if at all. The 
physical explanation is in the fact that the plasma 
frequency is a "resonant" frequency at which the 
electrons undergo large-amplitude oscillations. 
Hence, even if the static magnetic field is weak, 
the electron path length over which it operates may 
be large enough that its effect is important. 

Physical Dimensions of the Interaction Zone 

Because of the difficulty of attacking a completely 
general problem, we demonstrate the effect of phys­
ical dimensions by considering the specific example 
of a TEM wave propagating in the direction of a 
static magnetic field. The conclusions which are 
extrapolated nevertheless seem plausible on physical 
grounds. 

The coordinate system and the unperturbed wave 
E CO ), H CO) are shown in Fig. 2. Using Eq. (16), we 
obtain the inhomogeneous equation for E (1) 

V 2E(l) + eECl) = rk2Eoeihe~, (18) 

which gives the first-order change in the electric field 

(19) 

This term, proportional to kz, produces a rotation 
of the electric vector in the transverse plane, an 
effect known as Faraday rotation. 

In a similar manner, it may be shown that E
(2

) 
will have a term proportional to (kZ)2, E (3

) to (kZ)3, 
and so on. Thus in solving the problem of propaga­
tion through a longitudinally magnetized slab of 
width L, one obtains a first-order field proportional 
to kL, and for a cylinder or sphere of radius a, 
a corresponding result proportional to ka. The size 
of the plasma, therefore, cannot be allowed to become 
too large for then the assumption of small changes 
will be violated. 

On the basis of the preceding results, we reason 
that the condition "'a/'" « 1 is not sufficient; the 
static magnetic field, operating frequency, plasma 
frequency, and characteristic dimension L must be 
such that 

z 

x 

S DIRECTION 

~ OF PROPAGATION 

y 

FIG. 2. Unperturbed 
TEM wave propagat­
ing in the direction of 
the static magnetic 
field. 

If this inequality is satisfied, the perturbation 
method should yield good results. 

VI. SOLUTION FOR THE FIRST-ORDER FmLDS 

Having established what appear to be sufficient 
conditions for validity of the perturbation theory, 
we proceed to determine the general solutions for 
the first-order fields, which satisfy 

V xE(l) = i"'~oH(l), 
(21) 

The general solution to Eqs. (21) consist of two 
parts, a particular integral and a complementary 
integral. In problems involving bounded plasmas, 
which are of interest here, both parts have physical 
significance. The particular solution is the field which 
arises directly from the interaction between the zero­
order wave and the static magnetic field. On the 
other hand, complementary solutions, satisfying the 
homogeneous equations, 

V x E~l) = iw~oH~l), 
(22) 

V xH~l) = -i",EE~l), 

are superimposed in order to satisfy boundary con­
ditions and thus may be interpreted as fields which 
are reflected from the boundary back into the plasma. 
Although the complementary solutions required for 
problems involving cylindrical or spherical plasmas 
may be obtained by known methods, particular 
integrals, denoted by Ep and H p, present a more 
formidable problem. 

We partition the field E~l) into two parts, one 
accounting forthe divergence and a remainder which 
is solenoidal. The first is found by using the diver­
gence operator on the second equation of Eq. (21), 
from which we find that 

V·E~l) = rV.(eB xE CO »). (23) 

Weare thus led to write that 

E~) = reB xE CO) + E~l), (24) 

(20) where E~l) is solenoidal. Substituting Eq. (24) into 
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Eqs. (21) and eliminating H~l), we determine that 
E~l) satisfies 

'\l2E~1) + k2E~1) = -iZo~k~(eB. V /ko)H(O) , (25) 

where Zo is the impedance of vacuum. The use of 
the normalized gradient operator, V /ko, is desirable 
for maintaining dimensional consistency. 

Assume now that the fields for the isotropic 
problem are known and, in accordance with one 
method for generating solutions to Maxwell's equa­
tions,6 H CO) is given by 

H CO) = V x (uWiO» + V x[ux(V W~O»)J. (26) 
ko ko ko 

In Eq. (26), u denotes one of the rectangular unit 
vectors ex, eu, e., or the (normalized) radius vector 
kar, the particular choice depending on the geometry. 
W~O) and W~O) must, of course, satisfy the scalar 
wave equation 

'\l'W + k'W = o. (27) 

Let E~l) be represented as 

E~l) = iZo~( eB• r){~ x (u ViI) 

(28) 

where nll and V~l) are scalar functions. It then 
follows, from the fact that eB is a constant vector, 
and from the commutative properties of the· La­
placian,7 that Eq. (28) will be a particular solution 
to Eq. (25) provided that the scalar functions V~l) 
and V~l) are related to the functions W~O) and W~O) 
by the differential equations 

It is important to note that the function V~r) 
generates a transverse electric wave (with respect 
to the vector u) while V~l) generates a transverse 
magnetic wave, the opposite from their respective 
zero-order counterparts, WiO} and W~O). This shows 
very clearly why TE and TM modes are not, in 
general, solutions to Maxwell's equations for a gyro­
electric plasma; a TE mode will "interact" with 
Bo to produce a TM mode, and vice versa. The 
physical origin of this interaction is, of course, the 
effect of the static magnetic field on the motion 
of the electrons, but to examine the field structure 
on the basis of the individual orbits would be 
prohibitively complicated. The macroscopic, or 
phenomenological, approach is a convenient al­
ternative. 

An example worth mentioning at this point is the 
case of a plane TE wave normally incident on a 
longitudinally magnetized cylinder. Here eB • V == 0, 
and eB xE CO) is in the transverse plane, so that the 
TE character of the incident wave is retained 
throughout. The case in which the cylinder has a 
circular cross section was discussed by Platzman 
and Ozaki.3 

VI. APPLICATIONS TO CYLINDRICAL 
AND SPHERICAL SYSTEMS 

To determine the fields generated by the inter­
action between the zero-order wave and static 
magnetic field, it is necessary to know the functions 
Vil) and V~l). These shall now be determined for 
cylindrical and spherical systems. 

Cylindrical Coordinates 

'\l2V?) + k'Vil) 

'\l'V~l) + k2V~1) 
-k~W~O) , 

-k~W~O) . 

For boundary-value problems involving cylindrical 
(29) geometry, WiD) and W~O) are conveniently expanded 

in a series of the form 

Combining these results, we determine that a par­
ticular solution to Eq. (21) is 

E~I) = ~eB xE CO) + iZo~( eB· r){~ x (uVil) 

(30) 

where E CO) is the zero-order electric field and ViI) 
and V~l) are derived from the generating functions 
for the zero-order magnetic field as prescribed by 
Eq. (29). 

6 W. R. Smythe, Static and Dynamic Electricity (McGraw­
Hill Book Company, Inc., New York, 1950), 2nd ed., Chaps. 
14 and 15. 

7 Reference 6, p. 265. 

+'" 
W = L: a"J"(j3p)e,n,,,ei 'Y', (31) 

where {3 = W - 'Y2) '. Then Vii) and V~I) will 
have the expansion 

+a> 

V = L: a"u,,(p, <p, z), (32) 

where the U" satisfy 

! ~ ( aUn) + .1 a
2

u" + a2

u" + k2 
pap p ap p' a2<p az' UtI 

= -k~J,,(j3p)e''''''e''Y·. (33) 

We assume that the <p and z dependences of u" 
are the same as on the right, and represent the 
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solution as 

U,,(p, ((), z) = R,,{f3p)ei"'i'e i 'Y'. (34) 

Substituting Eq. (34) into Eq. (33), we determine 
that R,,({3p) must satisfy the ordinary differential 
equation 

2 d
2
R,,(v) + dR,,(v) + ( 2 _ 2)R ( ) 

V dv2 V dv v n "v 

v2 

= -2 J,,(v), 
11 

(35) 

where v = {Jp and 11 = (3/ko• This is an inhomogeneous 
form of Bessel's equation and may be solved using 
the method of variation of parameters.s The solu­
tion is 

R .. {f3p) = (f3p/2112)J~({Jp). (36) 

It follows that, if W~o) is given by 
+<» 

W(o) = "" (0) J (R )ein'i'ei'Y' 
1 ~ ~ ,,~p , (37) 

then, for V~l), we have 

8° ... --
6° 

'it 4° 8=20° 
Koa=2.0 

~ 
~=0.67 

0.1 0.2 0.3 0.4 0.5 
Wg/w 

FIG. 3. Orientation angle tit of the polarization ellipse; com­
parison between exact and first-order results. 

Using the eigenvalue identity 

1 a f. as":.) 1 a2 s:: 
sin 0 ao \sm 0 To + sin2 0 al 

= -n(n + 1)S':, (43) 

we determine that R.. must satisfy the ordinary 
differential equation 

f.l +<» 

V:l) = 2~P2 L a~O) J~({Jp)ei"'i'ei'Y', 
v ft.--Q) 

(38) v2 d2~;2(V) + 2v d!" + [v 2 
- n(n + 1)]R,,(v) 

with an analogous result for V~l) corresponding 
to W~o). 

Spherical Coordinates 

Here W:O) and W~O) will have the form 

<» +" 

W = L L a<:'~3,,(kr)r:,(cos O)eim<P, (39) 
",-0 m--n 

in terms of the radial coordinate r, the azimuthal 
angle ((), and coaltitude angle O. l1 .. (kr) denotes any 
spherical Bessel function and PO: an associated 
Legendre polynomial. 

By analogy with the cylindrical case, we are led 
to solve 

1 a ( 2 au'::) + 1 a (. au,::) + 1 a2u':: 
?ar r Tr r2 sinoao sm0--;;e r2 sin2 e a,/ 

+ kV;: = -k~l1,,(kr)P'::(cos O)eim<P. (40) 

Assume now that the tp and 0 dependences are the 
same as on the right so that 

u'::(r, 0, tp) = Rn(kr)S":.(O, tp), (41) 

where 

S'::(O, tp) = P'::(cos O)eim'i'. (42) 

8 E. R. Nagelberg, "Microwave Interaction with Bounded 
Gyroelectric Plasmas," Technical Report No. 31, Antenna 
L8.boratory, California Institute of Technology, Appendix D 
(1964). 

(44) 

with v = kr and 11 = k/ko• If we make the sub-
stitutions 

R,,(v) = (7r/2v)!G,,(v) , 

3,,(v) = (7r/2v)!Z,,+!(v) , 
(45) 

we obtain the same equation for G,,(v) as in the 
previous section, except that the index is now half­
integral. We may still write, however, that 

G,,(v) = (kr/2112)Z~+!(kr), 
and hence that 

(46) 

u":.(kr, 0, tp) = (kr/2I.?)(7r/2kr)!Z~+!(kr)S":.(O, tp). (47) 

Using Eq. (46) and the series for W~O) and W~O), 
we may obtain the corresponding series for V~l) 
and V~l). 

As mentioned earlier, the final step is to super­
impose the usual vector wavefunctions inside and 
outside the plasma in such a way that the compo­
nents of electric and magnetic fields tangent to the 
interface are continuous. For the cylindrical case 
this will be essentially straightforward, owing to 
the simple dependence on tp and z. It will be found 
that, when the static magnetic field is not aligned 
with the z axis, the operators eB x and eB • V which 
occur in Eq. (30) will cause a coupling between 
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-0.10 

-0.20 

8-20· 
-0.30 Koo.2,O 

~'0.67 

-0.40 '--0..J...I--O...l..2--.l0.3--.l0.'-4 --01-.5--1 

Wg,w 

FIG. 4. Eccentricity e of the polarization ellipse; comparison 
between exact and first-order results. 

functions of the form e' .... and eH .. +l) .. and eH,,-n ... 
This is analogous to problems in quantum mechanics, 
where a perturbation which does not preserve cylin­
drical symmetry causes a coupling between states 
with different z components of angular momentum. 

The difficulty is compounded in the case of spheri­
cal coordinates because of the complicated depend­
ence on the angle O. However if, without loss of 
generality, we align the coordinate system so that 
the z axis is in the direction of the static magnetic 
field, then there is coupling only between different 
n values. The case where all quantities are in­
dependent of cp has been examined and it is found 
that wavefunctions corresponding to a given n 
value couple into functions of order n - 1 and n + 1. 9 

vn. A VERIFICATION OF THE THEORY 

In order to verify the previous results, the per­
turbation theory was applied to the problem of 
scattering of an obliquely incident plane wave by 
an axially magnetized cylinder with circular cross 
section.1O The incident wave was polarized with the 
electric field perpendicular to the plane of incidence, 
i.e., the plane determined by the incident propaga­
tion vector and the axis of the cylinder. 

The far-zone scattered field consists of TEM waves 
propagating in the direction of specular reflection. 
However, whereas in the isotropic case w./w = 0 
the scattered field in the plane of incidence is 
polarized in the same direction as the incident 
wave,' as the static magnetic field increases the 
scattered wave becomes elliptically polarized. Both 
the orientation and eccentricity of the ellipse depend 
on Bo. Figures 3 and 4 illustrate the angle of orienta­
tion '" with respect to the incident electric vector, 
and the magnitude of the eccentricity e as a function 
of wv/w for w,,/w = 0.67, koa = 2.0, and 8 = 20°; 

o Reference 8, Chap. VI. 
10 Reference 8, Chaps. III and V. 

a is the radius of the cylinder; and 8 is the angle 
between the incident propagation vector and the 
normal to the axis. As anticipated, the perturbation 
theory correctly predicts the behavior for small 
values of magnetic field. 

vm. SUMMARY AND CONCLUSIONS 

The purpose of this article is to present a theory 
of microwave interaction with gyro electric plasmas 
in which the biasing magnetic field is regarded as 
a perturbation. Accordingly, we represent the elec­
tromagnetic field as being made up of a sum of 
partial fields arranged in order of increasing com­
plexity. The fields of lower order are presumed to 
interact with the static magnetic field to produce 
those of higher order. Such a formulation has the 
advantage that, under suitable conditions, the more 
complex fields may be neglected. These conditions 
are that the ratio wg/w be less than unity and that 
the operating frequency, plasma frequency, and 
characteristic dimension L be such that the in­
equality, 

IwgeJ.,kL/w(w2 
- w~)l « 1, 

be satisfied. This is equivalent to the physical re­
quirement that the static magnetic field have a 
relatively small effect, i.e., that the additional fields 
which result from the gyro electric character of the 
plasma be small compared to those which would 
exist if the medium were isotropic. 

By solving formally for the first-order fields we 
find that TE and TM modes are not, in general, 
solutions to Maxwell's equations for a gyroelectric 
medium. The physical reason for this is that the 
effect of the static magnetic field on the electron 
motion induced by a wave of one type is such as 
to produce a wave of the other type. 

The first-order theory is then applied to cylindrical 
and spherical systems. The fields induced by the 
first interaction are essentially determined in terms 
of appropriate coordinates, thus permitting the first­
order solution of boundary-value problems. A com­
parison is made between the exact and perturbation 
solutions for the problem of scattering by an axially 
magnetized column. As anticipated, the approximate 
solution is valid for small values of magnetic field. 
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For high-energy potential scattering, when the p~rtial wB:ve eXP!l'nsion conv~rges too slow~y to 
be directly useful, a technique is proposed for ext~actmg the differentIal croBS ~ectlOn more effectIvely 
from the phase shifts by means of a weight functIon and orthogonal polynomIal approach. 

I. INTRODUCTION AND CONCEPT 

T HE exact solution of a potential scattering 
problem normally involves separation of var­

iables followed by numerical solution of the equa­
tions for the partial waves (which may be coupled 
for noncentral potentials). At high energies (i.e., 
when the ratio of range to wavelength is large), 
many partial waves contribute significantly. This 
gives rise to the twin problems that a prohibitively 
large number of partial waves (or at least their 
asymptotic representation in terms of phase shifts) 
must be computed, and that (especially for large 
angles of scattering) heroic measures are required 
to achieve sufficient precision to cope with near 
cancellations. 

A mathematically similar difficulty was en­
countered in the problem of diffusion of atomic 
radiation in matter, and considerable success was 
achieved by a technique involving a spatial weight 
function and expansion of the distribution function 
in terms of polynomials orthogonal relative to the 
weight function. l A related approach is here proposed 
for the scattering amplitude f. From the partial 
wave expansion, f emerges as a Legendre poly­
nomial series. The Legendre polynomials are poly­
nomials in x = cos () which are orthogonal relative 
to weight function unity. It seems reasonable to 
rewrite f in terms of a weight function W (x) times 
an expansion in polynomials orthogonal relative to 
W. With a judicious choice of W, this would yield 
a more rapidly convergent series for the angular 
distribution. Clearly, if W happened to coincide with 
f there would be maximum convergence (a single 
term). The more nearly W is a good guess to the 
exact f, the better the rate of convergence. The 
choice of W then involves correlating the preliminary 
available information (solutions of cognate problems, 
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approximations to present one) for a best guess at f. 
A bootstrap improvement can be achieved by putting 
adjustable parameters in Wand then varying them 
to improve the tailing-off of the series. A blow-by­
blow run-through of the technique will be given for 
a particular case, followed by a systematic exposition 
of the procedure. 

n. ILLUSTRATION: n-p POTENTIAL 

Inasmuch as the technique involves the use of 
intuition and exploration, the gist of it can best be 
conveyed in a blow-by-blow solution of an illustrative 
example. Of necessity, the illustration has to be 
set up somewhat artificially, since an assessment of 
success requires the exact solution to be known, 
which in turn undercuts the need for the analysis. 
An example simple enough for clarity (and hand 
computation) yet nontrivial, can be constructed for 
n-p scattering at about 100 MeV. Swan2 quotes 
several such central potentials (with parameters 
adjusted to yield the experimental scattering length 
and effective range) and quotes machine computa­
tions of the phase shifts at six energies. The case 
chosen is the Gaussian potential 

U(r) = -Uo exp (-(r/b)2] (1) 

for the 3S state (Uo = 1.7399 X 1026 cm-2
, b = 

1.4837 X 10-13 cm) at the highest energy given 
(k = 1.5 X 1013 cm- I

). Swan quotes the phase 
shifts for l = 0 - 6, the last one being 0.1% of 
the first; the differential cross section can be re­
constructed from these, yielding the curve labeled 
"exact" in Fig. 1. The problem is now posed as 
follows: Suppose that only the first three exact phase 
shifts were known, i.e., 

80 = 0.6830, 81 = 0.4941, 82 = 0.2290. (2) 

From these (neglecting the higher ones) there re­
sults the curve labeled "truncated" in Fig. 1, which 
obviously completely fails at large angles of scatter-

s P. Swan, Nucl. Phys. 18, 245 (1960). 
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FIG. 1. Differential cross section for an n-p scattering potential. 

ing. Can this failure be rectified with the orthogonal 
polynomial technique? . 

The Born approximation oross sectIOn for the 
Gaussian is well known,3 namely 

0'(0) = (1r/16)U~b6 exp [_k2b2(1 - cos 0)]. (3) 

It is also plotted in Fig. 1; characteristically, it is 
pretty good at small angles, too small at l~rge 
angles. Incidentally, summing the Born~approx~a­
tion phase shifts (also given by Swan) YIe~ds a qUl~e 
different cross-section curve, comparably ill error ill 
the opposite directions for large angles. The prescrip­
tion of using the Born approximation with the first 
few phase shifts corrected to their exact values4 does 
not work here. 

The scattering amplitude I, is an expansion in 
Legendre polynomials PI(x) (wher~ x = cos. 8), 
i.e., in polynomials orthogonal relatIve to a weIght 
function unity. The object is now to switch to a 
different weight function. An obvious first choice 
is the Born approximation, i.e., (since a multiplica­
tive constant does not affect the result) to use 

W(x) = exp (!k2b2x), (4) 
a L. D. Landau and E. M. Lifshitz, Quantum Mechanics: 

Non-Relativistic Theory (Pergamon Press Ltd., London, 
195821. p. 413. The .~ A'-- . 

4.1.'1. F. Mott and H. S. W. Massey, The 0711 OJ wm'tC 
Collisions (Oxford University Press, London, 1949), pp. 
191-193. 

with f (or more precisely with its real and imaginary 
parts). When this is tried out, the expansion co­
efficients are found to increase rather than decrease 
(the CPo's are of order unity), namely for the real 
part of I 

Dl/Do = -1.453, D2/Do = -6.409; (5) 
and for the imaginary part of f 

Dl/Do = - .3483, D2/Do = -8.368. (6) 

This behavior immediately signals that the weight 
function is not adequate, that a more sophisticated 
one will be required. 

It is known that in general the Born approxima­
tion will be better at small angles, and will give 
too small a cross section at large angles.4 (To play 
the present game fairly, suoh background informa­
tion can be used, but a peek at the exact curve is 
not allowed.) Thus, the weight function should be 
modified in that direction, i.e., the new weight func­
tion should differ little from the Born approxima­
tion at small angles and give a larger result at large 
angles. This can be achieved with a minimum of 
new computational effort by choosing 

W(x) = exp (!k2b2x) + A exp (_!k2b2 Ix/). (7) 

The constant A is best used as an adjustable 
parameter to be selected to make the sequence of 
D,.'s drop off as fast as possible. The simplest 
prescription is to choose A such that D2 = 0; this 
means using a different value of A for the real 
part of I than for the imaginary part of f. (Formally, 
better convergence criteria can be set up, but they 
are more laborious.) In the present case, this con­
straint on A leads to a quadratic equation, and the 
average of the results obtained with the two roots 
has been used. Carrying through this calculation, 
the curve labeled "weighted" in Fig. 1 is obtained. 
The agreement with the "exact" curve is respectable. 

In the last round, the Dl values obtained are still 
of comparable magnitude to the Do values. This 
serves as internal evidence that there is yet a 
discrepancy. The next systematic step would be 
to further refine the weight function, aiming to 
achieve Dl « Do as well as D2 = 0; success in this 
effort would provide confidence that results close 
to the exact have been obtained. 

m. SYSTEMATIC PROCEDURE 

The illustrative example has illuminated the 
approach-the sequence of steps and the relevant 
considerations. The outline of the procedure can 
now be systematized, with an eye to making the 
variation of parameters amenable to machine 
programming. 
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The starting point is a given potential for which 
there are available a finite number of phase shifts 
which do not suffice to determine accurately the 
differential cross section. At least a rough idea is 
always attainable as to what the cross section should 
look like, either from known solutions of cognate 
problems or from an approximate solution of the 
present one. The aim is to exploit this auxiliary 
information plus the internal resources of a variation 
of parameters technique in order to achieve optimum 
use of the phase shifts. 

The phase shifts yield the real and imaginary 
parts of the scattering amplitude f as finite Legendre 
polynomial expansions with real coefficients; these 
two are handled as separate and distinct, though 
parallel, problems. A weight function is written 
down, consisting of the best preliminary guess as 
to the form of f(real or imaginary part, respectively). 
The weight function should incorporate one or more 
adjustable parameters, which need not occur 
linearly. The expansion in polynomials orthogonal 
to the weight function is next calculated; on a 
computer, this means a sequence of calculations with 
each of a succession of values of the parameters. 
What is desired is a particular choice of values of 
the parameters for which the expansion coefficients 
fall off successively at a reasonably fast rate. This 
goal can be expressed as a sequence of inequalities 
of increasing stringency, the computer being pro­
grammed to keep varying the parameters until the 
conditions are met (with obvious auxiliary instruc­
tions to narrow the range of the scanning as the 
conditions start being satisfied). If the convergence 
requirements fail to be met, the weight function 
should be changed and the process repeated. 

Work is in progress, in collaboration with C. R. 
Fischer, on applying this technique to the scattering 
of high-energy electrons by nuclei. 

APPENDIX: ORTHOGONAL POLYNOMIALS 

In this section, expansion of a function in terms 
of polynomials orthogonal relative to a weight func­
tion is considered, and the transformation from one 
weight function to another outlined. To simplify the 
exposition while retaining ample generality for the 
present purpose, it will be assumed that all functions 
are real functions of a real variable, the weight 
functions are nonnegative, and all integrals exist 
and are finite. These conditions can be considerably 
relaxed; exhaustive discussions can be found in the 
standard mathematicalliterature.D 

The scalar product of two functions f(x) and g(x) 
relative to a weight function W(x) in the interval 
a ~ x ~ b is defined as 

(f, g) = t W(x)f(x)g(x) dx. (8) 

A set of polynomials {cf> .. (x)} is orthogonal in this 
system if 

n,= m. (9) 

As a particular case, {p .. (x)} will denote the set 
of orthogonal polynomials with weight function unity 
in the same interval, and the corresponding scalar 
product will be denoted by square brackets: 

[P", Pm] = 0, n~ m. (10) 

Since a polynomial of order n is expressible in terms 
of any complete set of polynomials of order up to n, 

" 
p .. (x) = L: a"kcf>k(x). (11) 

.10-0 

Taking the scalar product with cf>m (for m ~ n), 
Eq. (9) yields for the coefficient 

a"", = (P", cf>",)/(cf>"" cf>m). (12) 

If the P,,(x) are known, the above relations suffice 
to construct the cf>,,(x), up to an arbitrary constant 
factor. For computational ease, the latter will be 
specified by the choice 

a"" = 1 (13) 

rather than by normalizing the polynomials. For 
m = n, Eq. (12) then yields 

(cf> .. , cf>,,) = (P", cf>,,). (14) 

The cf>,,(x) can now be obtained recursively from 
Eq. (11) upon substituting Eqs. (12)-(14) into it: 

cf>o(x) = Po(x), (15) 

,,-1 (P", q,k) 
q,,,(X) = p .. (x) - L: q,k(X) (P cf>)" (16) 

.10-0 J" k 

Given an expansion of a function in terms of the 
set {P,,(x)}, its expansion in terms of the set {cf> .. (x) I 
relative to the weight function W(x), 

~ ~ 

L: CkPk(X) = W(x) E D",q,,,,(x), (17) 
k-O m-O 

can be directly deduced on applying the orthog­
onality relations. Upon multiplying Eq. (17) by 
cf> .. (x) and integrating from a to b, 

.. .. 
6 G. Szego~" Orthogonal Polynom~a18 (American Mathemati- '" C [P ..I.] - '" D (..I. ..I.) - D (..I. ..I.) £oJ k k, '1'11 - £.J m\'Ym, '1'.. - .. \'Y", '1' ... 

cal Society, ew York, 1959). k-O ",-0 
(18) 
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The k sum cuts off at k = n because the expansion 
of cP" in terms of the PI; has no contribution for 
k > n. Substituting Eq. (14), 

A crucial point here is that D" depends only on the 
first n of the C '" so a given number of terms in the 

JOURNAL OF MATHEMATICAL PHYSICS 

left-hand series of Eq. (17) completely determines 
an equal number of terms in the right-hand series. 

For the sake of illustration, the set {P,,(x) I were 
described as having weight function unity. Actually, 
no essential use was made of this specialization. 
The results above permit a direct transformation 
from an expansion in terms of any weight function 
to an expansion in terms of any other weight func­
tion (subject to the stated analytical limitations). 
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Certain Hilbert spaces of generalized functions are examined. They contain the space of tempered 
distributions, are invariant with respect to the Fourier transformation and contain functions that 
increase rapidly at infinity. 

1. INTRODUCTION 

THIS paper is concerned with a family of Hilbert 
spaces which are closely related to the topo­

logical vector spaces "of type S" of Gel'fand and 
Silov. (See Refs. 1 and 2). These Hilbert spaces share 
with L (2), and with the space of tempered distribu­
tions, the property of being invariant with respect 
to the Fourier transformation. Their elements are 
not restricted to polynomial growth at infinity, a 
fact which makes them sometimes more suitable than 
tempered distributions. 

The definitions and results of Sees. 2,3, and 4 can 
be illustrated on a simple special case: 

(A) The first-and decisive-stage of the game 
is the construction of Hilbert spaces of testing 
functions, denoted here by H "" 

Let S be the vector space of infinitely differentiable 
functions u(x) ( - (Xl < x < (Xl) such that 

sup IxkDmu(x) I < co (k, m = 1, 2, ... ). 

In S, consider the sequence of operators 

Mo = 1 
• This paper was sponsored by the Ford Foundation. 
1 I. M. Gel'fand and G. E. Silov, Generalized Functions 

(Russian) (State Publisher of Physical &; Math. Literature, 
Moscow, 1958), Vol. II. 

'S. Mandelbrojt, Ann. Sci. Ec. Norm. Sup. (3e serie) 
77, 41 (1960). 

(1.1) 

Here p = i-1D, and D is the operator of differen­
tiation. The expression (u, v) means f u*(x)v(x)dx. 

For every u E S, u ;6 0, the numbers (u, M"u) 
are positive. 

Now let a be a positive number. Define H .. as the 
set of functions u E S for which 

:E [1'(an)r2(u, M"u) < co. (1.2) 

Here I' is Euler's gamma function. 
With the obvious scalar product, H .. becomes a 

Hilbert space (Sec. 3B). If a < !, then H a consists 
of the element u = 0 only; if a > !, then H a is 
infinite dimensional (Sec. 4A). 

The Fourier transformation is a unitary operator 
inH",. 

The Hermite functions h" are eigenfunctions of the 
operator of Fourier transformation. The Fourier 
invariance of H", suggests that the condition u E H .. 
can be restated as a restriction on the absolute values 
of the expansion coefficients (u, hk ). This is indeed 
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the case (Sec. 3A); consequently the space H", has a 
simple characterization in the representation due to 
Bargmann.a 

If u E H .. then u(x) = 0(lx1 2 exp (-lx\lI"'» for 
large Ixl (Sec.4B). 

If a < 1, then every u E H .. can be analytically 
continued to a function u(x + iy) = u(z) which is 
entire analytic of order p =::; (1 - a)-l (Sec. 4E). 

If a = 1 then every u E H .. is analytic in a strip 
along the real axis (Sec. 4F). 

If a > 1, then H .. contains functions of compact 
support. 

(B) To every Hilbert space H .. of testing functions 
there corresponds a Hilbert space H Ii of generalized 
functions (Sec. 3F). Since every Hilbert space is 
self-dual, it is possible to identify H,. and H Ii by the 
canonical correspondence between the element 
u E H .. and the functional v - (u, v)". It is con­
venient not to do this, but to identify a locally 
integrable function f(x) to the functional v -
J f*(x)v(x)dx. Hilbert spaces of generalized functions 
are discussed by Lax,4 Gel'fand and Vilenkin,6 and 
Berezanskii6 where further references can be found. 

The properties of the elements of H a follow easily 
from properties of H,., The space 8' of tempered 
distributions is contained in every Hii(a > i). The 
Fourier transformation is a unitary operator in H ii' 
The space H ii contains all locally integrable functions 
f(x) such that f(x) = O(exp (lxI 1/a-.» for some 
E > O. In particular, if! < a < 1 then H a contains 
all exponentials. By Fourier invariance, it also 
contains all delta functions 8" with arbitrary complex 
a; their definition is immediate since the testing 
functions u E H .. (! < a < 1) are entire analytic. 

(C) The family of Hilbert spaces H a , L(2), Ha 
(! < a < (0) forms a convenient framework in 
various questions of mathematical physics (e.g., 
in the study of nonnormalizable states and of the 
propagators of field theory). Some of the applications 
have been sketched in a previous papee; others will 
follow. 

In actual calculations one mostly deals with 
bounded operators between Hilbert spaces of the 
family, and not with bounded operators in individual 
spaces. Unbounded operators do not occur. Infor­
mation about norms of certain classes of operators 
can be found in Secs. 3E, 4C, and 4D. 

The families of Hilbert spaces considered in Sec. 4 

a V. Bargmann: Commun. Pure Appl. Math. 14, 187 (1961). 
'P. D. Lax: Commun. Pure Appl. Math. 8, 615 (1955). 
61. M. Gel'fand and N. Ya. Vilellkin, Ref. 1, Vol. IV. 
e Yu. M. Berezanskii: Usp. Mat. Nauk 18, No.1, 63 

(1963). 
7 A. Grossmann: J. Math. Phys. 5, 1025 (1964). 

form what Gel'fandll calls an "osnashchennoe" 
Hilbert space. A slight modification of this concept 
is described in Sec. 5. 

This paper is self-contained in the sense that 
the proofs are based on explicit calculations and on 
the simplest properties of Hilbert space. There are 
two exceptions: we use the concept of order of an 
entire analytic function (see Ref. 8) and the ele­
mentary fact that the space 8 is complete. 

2. THE NUMBERS (u, M .. u) 

To every function u E 8 one can associate an 
increasing sequence of numbers (u, M .. u). The 
Hilbert spaces 8{ft) C 8-to be introduced in 
Sec. 3A-are defined by restrictions on this sequence. 
The study of the spaces 8{ft) is based on elementary 
properties of the numbers (u, M .. u), derived in this 
section. The numbers (u, M"u) are Fourier invariant 
(Sec. 2B); they are related to the numbers 

sup IxmDiu\ 

(Sec. 2C) and to the expansion coefficient of u in a 
Hermite series (Sec. 2D). 

A. Notations and Definitions 

Let x = {Xl' ••• , Xd} denote a point in Rd
, Write 

D, = a/ax. and Pi = i-lD i • As usual, xm denotes a 
monomial x~' ... X;;'d and Iml stands for ml + ... 
+ md' The symbol (u, v) means f u*(x)v(x)dx. The 
space of infinitely differentiable functions u(x) such 
that suP .. IxmD'u(x) I < 00 for all m, r, is denoted by 
8. The Fourier transformation operator is defined, 
in 8, by 

For n = 0, 1, 2, ... define, in 8, an operator M .. by 

Mo = 1 
d 

M 1 = :E (x: + p~) 
i-I 

d 

M .. = :E (x,M .. _lx, + P,M"-lP,) 
i-1 

Notice that, for u E 8, u ;of 0, 

(u, M"u) > O. 

(2.1) 

(2.2) 
8 R. P. Boas, Entire Functi01l8 (Academic Press Inc., New 

York, 1954), p. 8. 
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If n = 0, this is obvious, If n > ° it follows from 

(u, M"u) 
d 

= :E [(x;u, M,,-IXiU) + (P;u, M"-IP;U)] (2.3) 
i-I 

by complete induction. Actually this argument shows 
that M" is the sum of (2d)" terms each of which is 
positive definite. 

B. Fourier Invariance 

Theorem 2.1: For every u E S and every n 

(u, M"u) = (Fu, M"Fu). 

Proof: For n = 0, this is the Parseval equality. 
For n > 0, use complete induction and the operator 
equalities p;F = -Fx;, Fpi = x;F: 

(Fu, M"Fu) 
d 

:E [(XiFu, M,,_IX;Fu) + (p;Fu, M .. _1P;Fu)] 
,-I 

d 

Furthermore, for every v E S and with r2 = :E~-l x~ 

J Iv (x) I dx = J Iv (x) I (1 + r2~)!(1 + r 2.)-t dx 

::; Cd{J Iv(x)12 (1 + r2B) dXr 

::; Cd[(v, (Mo + M.)v)]! = Cd[(Fv, (Mo + M.)Fv)]l. 

So 

sup lu(x) I ::; (211"r!dCd[(u, (Mo + M.)u)]l. 

From (2.3) and the positivity of (u, M .. u) it follows 
that (x;u, M"XiU) ::; (u, M .. +lu) and (PiU, M"p;u) ::; 
(u, M"+lu). So 

sup IXiU(X) I ::; (211"rtdCd [(X;u , (Mo + M.)x;u)]' 

::; (211"r taCd[(u, (MI + MHI)u)]l. 

Repeated application of this inequality and of the 
corresponding inequality for D;u gives (2.5). 

Remark: It follows from (2.5) that 

:E [(Fp;u, M,,_lFp;u) + (Fx;u, M .. _1Fx;u)] 
;-1 since the numbers (u, M"u) increase with n (See 

d Sec.2E). 
L [(PiU, M"_IP;u) + (x;u, M,,_IXiU)] = (u, M"u), 
... 1 

which proves the assertion. 

C. Relationship between (u, M"u) and 
sup IxmDkul 

Notice that here n denotes one integer while m 
and k are d-tuples of integers. 

The theorems below show that, for any given 
u E S, the sequence of numbers Cu, M"u)t is not 
drastically different from the (multiple) sequence 
supz Ix"'Dkul. 

Theorem 2.2: Denote by 8 the integer 8 = [! d] + 1 
and by Cd the number 

An immediate consequence of Theorem 2.2 is 

Theorem 2.3: Let u(y) (v = 1,2, ... ) be a sequence 
of elements of S such that, for every (fixed) n 

lim (u(') , M .. u(v» = 0. 

Then the sequence u(·) converges to zero in the 
topology of S. 

Estimates in the other direction are provided by 

Theorem 2.4: Denote by lul2 .. the number 

lul 2 .. = :E sup Ixm Dkul 
m.k 

the sum being taken over all m, k such that [ml + 
Ikl s 2n. Let lulL be the number 

lulL = J lu(x) I dx. 

(8 has been chosen so as to make Cd finite). Then Here u is any element of S. Then: Given any E > 0, 

sup Ix"'Dku(x) [ ::; (211"t 1dCd [(u, Mlml+lkl, u) there exists a no = no(e) such that 

+ ( M )] ' (2.5) (u, M"u) ::; n! (2 + E)" lul2" lulL (2.7) u, Iml+lkl+" U 

for every u E S. 

Proof: For every u E S and for every x we have 

lu(x) I ::; (211")-id J [(Fu)(y)[ dy. 

for all n > no. 

Proof: One can commute in M" the operators Xi 
to the left and write 

M .. = :E c,,(m; k)x"'Dk. (2.8) 
.... k 
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The coefficients c,,(m; k) are different from zero 
only if 0 ::; Iml + Ikl ::; 2n and if Iml + Ikl is even. 
Because of (2.1), they satisfy the recursion relation 

d 

c,,+l(m; k) = :E {c,,(m - 2.; k) - c .. (m; k - 2.) 
i-I 

+ (k, + l)c,,(m - I,; k + I,) 
- (m, + l)c .. (m + I,; k - I,)} (2.9) 

which start with coCO; 0) = 1. Here I, is the d-tuple 
which has 1 at the ith place and 0 elsewhere. 

Denote by c" the largest of the numbers Ic,,(m; k)1 
for given n. Then (2.9) gives 

d 

Ic .. +1(m; k)1 ::; L: {2c .. + (k, + 1)c .. + (m, + 1)c .. } 
i-I 

= (4d + Ikl + Iml)c" 
::; (4d + 2n)c" = 2n(1 + 4d(2nfl)c .. 

so that, for sufficiently large n, c,. < (2 + e)"n!. 
Then 

(u, M"u) = L: e,,(m; k)(u, xmDku) 
m,k 

proves the assertion. 

Corollary: If u('Y) E S for 'Y = 1, 2, ... and if 
u('Y)--+O in S, then, for every n, lim (u('Y>, M .. U('Y') ==0. 

D. Expressing (u, M"u) in terms of (u, hk ) 

It will now be shown that the numbers (u, M"u) 
can be readily expressed in terms of the Fourier 
coefficients of u with respect to Hermite functions. 

Let 

~; = Tt(x; + ip;) C· 1 2 d) J = , , ... , 
1/; = 2- i Cx; - ip;). 

The definition (2.1) becomes 
d 

M" = L: C~;M"-l1/; + 1/;M"-l~;). (2.10) 
j-l 

Denote by hk the Hermite functions 

hk = (k!)-i1/ kho 

d 

= 1r-
1d IT (2 k 'k,!)-t exp (-tX~)Hk'Cx,) 

,-1 

ho = 1r-
td exp (-~ 1; x~) , 

where the Hk.(x,) are Hermite polynomials. 

Notice that 

(hk , M"hm) = 0 if k ~ m. C2.11) 

For n == 0, this is the orthogonality property of 
Hermite functions. For arbitrary n, (2.11) follows 
from (2.10) by the definition of hk and by induction. 

Denote by a(n; k) the number 

(2.12) 

Theorem 2.5: For every u E S and for every n, 

Cu, M"u) == L: aCn; k) IChk , uW. (2.13) 
k 

Proof: Notice that u = L:k hk(hk, u) and use 
Eqs. (2.11) and (2.12). 

E. Estimates of a(n; k) 

It follows from (2.12) and (2.10) that 

a(O; k) = 1 for every k, 

that a(n; k) depends only on Ikl and that 

a(n; Ikl) == (d + Ikj)a(n - 1; Ikl + 1) 

(2.14) 

+ Ikl a(n - 1; Ikl - 1), (n ~ 1). (2.15) 

The recursion relations (2.15) give the estimates 

Cd + Iki)" ::; a(n; k) ::; 2"Ctd + Ik\) ... C2.16) 

Here 

(c) .. == c(e + 1) ... (e + n - 1) = r(c + n)jr(e). 

3. THE IDLBERT SPACES S(I}) AND S@ 

To every sequence {.8} = {.81, .82, ... } of positive 
numbers one can associate a Hilbert space S (.8) C S 
defined by (3.1). The elements of this space play 
the role of testing functions. If the numbers .8 .. do 
not decrease sufficiently fast, then the space S(.8) 
consists of the element u = 0 only. If the numbers 
.8 .. satisfy the condition (3.4), then S(.B) is infinite­
dimensional. The natural embedding of S«(3) into 
into L (2) is an operator of trace class. The polar 
decomposition of this operator allows a simple 
construction of the space S (m :> S' of generalized 
functions (Sec. 3F); S(m is also a Hilbert space. 
The properties of elements of S (.B) and S (f) are 
studied in Sees. 3C, 3D, and 3F. The Fourier trans­
formation is a unitary operator in S«(3) and in SCf>. 
The multiplication by certain entire analytic func­
tions defines bounded linear transformations between 
spaces S(.B) (Sec. 3E). 

The spaces S(.B) and S(P) may be called Hilbert 
spaces by type S. 
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A. Definitions 

The space 8({3) can be defined either by the 
condition (3.1) on (u, M .. u) or by the condition 
(3.3) on (hi, u). 

Definition: Let {{3} = !{3o, {31, •• , , {3 .. , ••. } be a 
sequence of positive numbers. Denote by 8({3) the 
set of all u E 8 which are such that 

'" L (3,.(u, M,.u) < IX). (3.1) 
.. -0 

Since (u, M"u) > 0 for u E 8, u ~ 0 (See Sec. 2A), 
it is clear that 8({3) is a pre-Hilbert space (Le., a space 
with scalar product but not necessarily complete). 

Another characterization of S({3) is given by 

Theorem 3.1: Define a (multiple) sequence of 
numbers Ak (0 ~ Ar. < IX) by 

a> 

A;;2 = L (3 .. a(n; k), (3.2) 
,,·0 

where the a(n; k) are given by (2.12) [or, equiv­
alently, by (2.14) and (2.15)]. Then S({3) consists 
exactly of the u E 8 for which 

L I(u, h"w X;;2 < IX). (3.3) 
k 

Proof: The assertion is an immediate consequence 
of Theorem 2.5. 

B. Nontriviality and Completeness 

If the numbers {3" decrease sufficiently rapidly, 
then 8 ({3) is an infinite-dimensional Hilbert space 
(Theorem 3.2). If the numbers {3" decrease too slowly, 
then 8 ({3) consists of the element u = 0 only (Theo­
rem 3.3). 8({3) is a Hilbert space. 

Theorem 3.2: Assume that the sequence {{3} is 
such that, for every k, 

A;;2 == L (3"a(n; k) < IX) , (3.4) .. 
i.e., that Ai ¢ 0 for all k. Then S({3) is a separable 
infinite-dimensional Hilbert space with the scalar 
product 

(u, v)p = L (3 .. (u, M .. v) = L (u, hk)X;;2(hk , v). (3.5) 
" k 

The elements Xthr. form an orthonormal basis of 
8({3), 

Proof: The condition (3.4) insures that the scalar 
product (hk , hi) is defined and equal to A;28,,;. SO 
S ((3) is infinite dimensional and the functions A"h" 
are orthonormal in S({3). It remains to be shown that 
S({3) is complete with respect to the norm II lip de-

fined by (3.5). If u E S({3), then the sequence of 
numbers IP" = A;;l(hr., u) belongs to l(2) (Le., satisfies 
Lk IIPkl 2 < IX», and lIull.e = IIIPIIII'l. The complete­
ness of 8({3) will be proved if we show that, for every 
IP E l(2), there exists a u E S({3) such that u = 
Lr. AkIPkhk • This means: we have to prove that the 
series Lk AkIP"h,. converges in 8({3). 

Consider the partial sums 

8~N) = L AkIPr.hk 
Ikl5.N 

They belong to S({3) and form a Cauchy sequence in 
S({3), since 

N+K 

/l8(N) - 8 (N+K) lip = E lIP" 12. (3.6) 
k-N 

Notice that 

(u, u)p ~ (3 .. (u, M"u). (3.7) 

By Theorem 2.3, then, the elements 8(N) form a 
Cauchy sequence in S. Since S is complete, there 
exists an element 

u .. = lim 8~N) E S, 
N-a> 

the limit being taken in the topology of 8. From the 
construction of u .. it follows that (hr., u .. ) = Ar.ip/o for 
every k. Consequently 

(u", u .. )/J = L (u", hr.)X;;2(hr., u .. ) = L IIPkl2 

k To 

which shows that u" E 8({3) and completes the proof 
of Theorem 3.2. 

Theorem 3.3: Let f3,. be a sequence of positive 
numbers such that, for every k, 

L (3 .. a(n; k) = + IX) (3.8) .. 
Then S ({3) consists of the single element u = o. 

Proof: If u E 8 and u ~ 0, then there exists at 
least one k such that (hr., u) ~ O. It follows then 
from (2.13) that (u, M"u) ~ a(n; k) I(hr., u)li for 
every n. Consequently 

(u, u)fJ = L f3 .. (u, M .. u) 
" 

(3.9) 

which shows that u does not belong to 8({3). 

Theorem 3.3a: If S({3) is infinite dimensional, then 
(3.4) holds for all k. 

Proof: The numbers a(n; k) increase with /k/. 
Consequently, if (3.4) fails to hold for some k, it 
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also fails to hold for all k' such that Ik'i > Ikl, and 
S({3) is finite dimensional. 

From now on it will be assumed-unless the 
contrary is stated-that S({3) is infinite dimensional, 
so that (3.4) holds for all k. 

C. Behavior of sups Ix'" Dkul 

By the results of Sec. 2C, restrictions on the 
sequence (u, M .. u) entail restrictions on the sequence 
sup Ix"'Dkul. 

Theorem 3.4: If u E S({3) , then, for every m, k 

sup Ix" Dkul ::; 21(2'71-)-ldCd lIull.s {3j!, +1,1,1 +.. (3.10) 

where 8 = lid] + 1 and Cd is given by (2.4). 

Proof: The assertion follows from (2.6) and (3.7). 

Theorem 3.5: Let u E S. Define lul2 .. as 

lul2 .. = 2: sup Ix" Dkul· 
1",'+lkl"'2 .. 

If the series 

2: n! (2 + E)" IU\2" (3" (3.11) .. 
converges for some E > 0, then u E S({3). 

Proof: This theorem is an immediate consequence 
of (2.7). 

D. Condition for Analyticity of u E S«()) 

Sufficiently stringent conditions on the sequence 
sup \Dku\ give analyticity of u. 

Theorem 3.6: Assume that the sequence {{3} 
defining S({3) is such that, for sufficiently large n, 
and some E > 0, 

(3.12) 
This means that 

lim sup (2n log nfl log ((3;1) == a < 1. (3.13) 

Then every u(x) E SCfJ) can be analytically con­
tinued to a function u(x + iy) = u(z) which is 
entire analytic of order p ::; (1 - a)-l in every one 
of its arguments. 

Proof: Notice that, by (3.10) 

\ Dku(x) \ ::; C,,{3lkt. (3.14) 

for every x and every k. In order to show that u is 
entire analytic, use (3.14) and the Taylor formula 
with remainder. In order to estimate the order of u, 
use the fQrmula 

_ . k log k 
p - hm sup log (1/\aki) (3.15) 

for the order of the entire function u(z) = 2:,1: aA:Zk
• 

Remark: It will be seen that (3.12) is compatible 
with (3.4) so that there exist infinite-dimensional 
spaces S({3) consisting of entire analytic functions. 

Remark: If u E S(fJ) then the complex conjugate 
u*(x) also belongs to S({3), since (u*, M"u*) = 
(u, M .. u). If u has the analytic continuation u(z), 
then u* has the analytic continuation u*(z*). 

E. Entire Functions as Multipliers 

In applications one often considers simultaneously 
several Hilbert spaces of type S. It is then important 
to know whether an operator (e.g., a differentiation 
operator or the multiplication operator by a func­
tion) is a bounded transformation from one Hilbert 
space into the other. A criterion for this will now be 
given. 

Let {{3} and {{3'} be two sequences that both 
satisfy (3.4) so that the Hilbert spaces S({3) and 
S({3') are both infinite dimensional. 

Let B(z) = B(x + iy) = 2:,1: BA:Zk be an entire 
analytic function of z = {Zl, ... ,Zd}. Assume that 
the numbers Bk satisfy the condition 

f [2: IBk\ (.0 (3~ )lJ2 == N 2 < CD. (3.16) 
.. -0 k "' .. + Ikl 

Theorem 3.7: If the above conditions are satisfied 
then 

(a) For every u E S({3) the product B(x)u(x) 
belongs to S({3'). 

(b) The bound norm of the mapping u(x) --t 

B(x)u(x) of S({3) into S({3') does not exceed the 
number N defined by (3.16). 

(c) The order of the function B (z) (in anyone of 
its d complex arguments) does not exceed 2. 

Remark: In the statement of Theorem 3.7, the 
multiplication operator B(x) can be replaced by a 
differentiation operator BCD). This follows from the 
fact that D = iF-1xF and that the Fourier trans­
formation F is a unitary operator in S({3). (See 
Sec.3G). 

Proof: Lemma 1: The numbers B k satisfy 

2: \Bk \ (Ik!!)! < CD. (3.17) 
k 

Proof of Lemma 1: The estimates (2.16) show 
that n! ::; a(n; k) for all nand k. Consequently 
2:" {3"n! ~ 2: .. (3"a(n; k) < CD. This means that 

(3;:1 = 'Y;:l(n!)!, with h .. } E p(2). 

So 
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where 'Yauu: is the largest of the numbers 'Y... Con- So 

sequently (ft~)!l(n; Bu) ~ I 17max I L IBkl {ft~)i{ftn+lklri 
L: IBkl {3;;l'k' ;::: ('Ymax)-I L IBkl [en + Ik/)!]i. (3.18) and k 

k 10 

By the assumption (3.16), the series on the lhs of 
(3.18) is convergent. So 

L Bk (Ik!!)! ~ L Bk[(n + Ik/)!]l < (Xl q.e.d. 
k k 

The assertion (c) follows from the lemma by 
(3.15). 

In order to prove (b) and (a), denote by 8.(r = 
1, 2, ... ) the partial sums . 

8. = L BkXkU(X). 
Ikl-O 

Introduce the notation 

len; v) = (v, M"v), (v E S). 

By the results of Sec. 2A, we have 

len; hV) = IAI len; v) (A arbitrary) 

len; VI + V2) ~ len; VI) + len; V2) 

len; xkv) ~ l(n + Ikl; v). 

Lemma 2: For every fixed n and for every fixed 
u E S({3), the functions len; 8.) form a Cauchy 
sequence with respect to the norm len; 8.). 

Proof of Lemma 2: Notice that u E S({3) means 
len; u) = {3;;l7J .. with {'I1 .. 1 E l(2). So 

r+Q r+Q 

::; L IBkl l(n + Ikl; u) = L IBkl {3:1 1101 '11,,+ 1101 
Ikl-r Ikl-r 

r+. 

~ 17Jm.x I L IB 10 I (3;;1, k 1 • (3.19) 
Ikl-r 

By the assumption (3.16), the series Lk IBk l{3;;lk is 
convergent. So the rhs of (3.19) can be made arbi­
trarily small by the choice of sufficiently large r. 
This proves the lemma. 

By Theorem 2.3, it follows that the partial sums 
8. converge, in S, to an element of S. This element 
is B(x)u(x) since lim 8.(X) = B(x)u(x) for every x. 

We have now to show that Bu E S({3') and find a 
bound on its norm. For every n, 

l(n; Ru) = lim len; 8.) 

~ L IBkl l(n + Ikl;u) ~ 2: IBkl {3~llkl'l1 .. +lkl 
k k 

"Bu"~, = 2: (3~r(n; Bu) ~ 17Jmaxl2 2: (2: IBkl {ft~)t 
.. .. k 

since 

l'I1maxl
2 ~ L: 1'11 .. 1

2 = L (3 .. r(n; u) = "u,,~. .. .. 
This completes the proof of the theorem. 

A straightforward consequence of Theorem 3.7 
concerns the inclusion relations between the various 
spaces S({3) and is obtained by setting R(x) = 1 
(i.e., Bk = OkO)' It is 

Theorem 3.8: Let {{31 and WI be such that 
00 {3' L -.!! == N 2 < (Xl. (3.20) 

.. -0 f3 .. 

Then S(f3) c S{ft'). The bound norm of the natural 
embedding of S{ft) into S({3') does not exceed N. 

F. The Space S(~) 

The Hilbert space Scm is, roughly speaking, the 
space of distributions corresponding to the space 
S «(3) of testing functions. 

Since S({3) is a Hilbert space, it is dual to itself. 
This means that there exists a canonical one-to-one 
correspondence between the elements u E S«(3) and 
the continuous linear functionals 

v ~ (u, v)p; v E S({3). (3.21) 

The element u can be identified with the functional 
(3.21). 

It is often more convenient to identify u with the 
functional 

v ~ f u*(x)v(x) dx, (3.22) 

which involves the scalar product in the Hilbert 
space L(2) ::) S({3) If this is done, then arbitrary 
continuous linear functionals on S((3) form a Hilbert 
space S (m ::) L (2) which will be studied in the 
present section. 

Denote by EofJ the natural embedding operator 
of S«(3) into L(2\ i.e., the operator which to every 
u E S ({3) associates the same u, considered as an 
element of L (2) • 

Let (EofJM be the adjoint of E ofJ, i.e., the mapping 
from L(2) into S((3) defined by 

(u, (EofJ)t.!)p = (EofJu , f) (3.23) 

for every u E S ({3) and every f E L (2) • 
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Denote by L~~) the positive definite operator 

L~~) = [Eo,8(Eo,8)lo]l. (3.24) 

Definition: Let S(j:J) denote the completion of V 2) 
with respect to the norm defined by the scalar 
product 

(f, g)p = (L!~)f, L!~)g). (3.25) 

Denote by Epo the natural embedding of L(2) 
into Scp). 

Theorem 3.9: (a) The operator L!~) (acting in 
V 2

» is given by 

L!~) g = L hkAk(hk, g), (3.26) 
k 

where the numbers Ak are defined by (3.2) and where 
the hk form the orthonormal basis of L (2) defined in 
Sec. 2D. (b) The polar decomposition (i.e., the 
decomposition into an isometric factor and a positive 
semidefinite factor) of E 0,8 is 

(3.27) 

where the unitary operator Uo,8 transforms the 
orthonormal basis {Akhkl of S(fJ) into the ortho­
normal basis {hd of L(2). (c) The polar decomposi­
tion of Epo is 

(3.28) 

where the unitary operator U po transforms the 
orthonormal basis {hkl of L(2) into the orthonormal 
basis A;lhk of S(j:J). 

The assertions of Theorem 3.9 are special cases of 
known elementary results and need not be proved 
here. 

Theorem 3.10: The natural embeddings EofJ and 
E ~o are of trace class. 

Proof: It is sufficient to prove that Lk Ak < ro. 

By (2.16), 

X;2 ~ L fJ,,(d + Iki)" > fJ".(d + Iki)". > fJ ... Ikl'" 
" 

for every no. Consequently 

Ak < fJ;.' Ikl-!"·· (3.29) 

The choice of a sufficiently large no gives the asser­
tion. 

Remark: The above proof shows that Lk A ~ < ro 

for every 'Y > O. 

Remark: The fact that Eo,8 is of trace class allows 
the application of known results5

•
6 on generalized 

eigenvalue expansions. 

The bilinear functional to be defined now cor­
responds to the value that a distribution takes on a 
testing function. 

Definition: Let f E S(i3) and u E S(fJ). Define 
the number (f I u) = (u I f)* by 

(f I u) = (Uop f, Uoflu) , (3.30) 

where UoP = (U~o)~ = (U~ot;J and the unitary 
operators U op and Upo are described in Theorem 3.9. 

Notice that the scalar product on the rhs of (3.30) 
is in L(2). 

From the definition (3.30) it follows immediately 
that I(f I u)1 ~ IIflill IIullfJ' that (f I u) = 0 for all 
u E S(fJ) entails f = 0, and that (f I u) = 0 for all 
f E S(ft) entails u = o. 

The bilinear form (3.30) is in a sense an extension 
of the scalar product in L(2). This is shown by 

Theorem 3.11: If f E L(2) C S(i3) then for every 
u E S(fJ) , 

(f I u) = f f*(x)u(x) dx. (3.31) 

Proof: The assumption means that f E S(i3) is in 
the range of the natural embedding operator Ello. 
Write f = Ellofo. Then 

(f I u) = (Uo~Ellofo, Uoflu) = (Uo~UpoL!~)fo, Uopu) 

= (L!~)fo, (L~~»-lEopu) = (to,Eoflu) = f f*(x)u(x)dx 

which proves the theorem. 
The element f E S(i3) will be identified with the 

linear functional u ~ (f I u) on S(fJ). As usual, the 
identification correspondence is antilinear. 

Theorem 3.12: The space Sf of tempered distri­
butions is contained in S(i3). 

Proof: Let u ~ leu) be any element of Sf. Con­
sider the restriction of l to S(fJ) C S. Since S(fJ) is 
dense in S (it contains all finite linear combinations 
of hk ), the restriction of l to S(fJ) determines Z 
completely. Let {u,} be a sequence of elements of 
S(fJ) such that IIu,IIp ~ O. Then, by (3.10), u, ~ 0 
in Sand l(u.) ~ O. This means that leu) is a con­
tinuous linear functional over S(fJ). Consequently 
there exists a VI E S(fJ) such that leu) = (VI, u)p. 
Then the element f = Up.U.pVI where f E S(j:J) 
satisfies (t I u) = leu) q.e.d. 

Remark: It can be shown that the natural embed­
ding of Sf into S (i3) is continuous. 

Some locally integrable functions belong to S(i3). 
This is shown by 
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Theorem 3.13: Let f(x) be locally integrable with 
respect to the Lebesgue measure. Assume that there 
exists a constant 0, such that, for every u E S(fJ), 

If f*(x)u(x) dX\ ~ 0, Ilull~· (3.32) 

Proof: By (2.16), 
~ = 
E (d + K),.{3" ~ g(K) ~ E 2"(!d + K),.{3" 
A-O ,,-0 

~ 

= E (3~(ld + K) .. 
,,-0 

Then there exists one and only one f E S (P) such 
that with {3~ = 2"{3". The assertion of the theorem follows 

from the 

(f I u) = f f*(x)u(x) dx. (3.33) 

Proof: By the assumption (3.32), the corres­
pondence u ~ J f*udx is a continuous linear func­
tionalon S({3). The proof proceeds as that of Theo­
rem 3.12. 

G. Fourier Invariance 

By Theorem 2.1 and the definition of S({3) , the 
Fourier transformation F is a unitary operator in 
S({3). 

Lemma: Let 'Y" be a sequence of positive numbers 
such that E" 'Yn~n = f(~) is entire analytic of order 
P < 1. Then M~) = En 'Yn(~)" is also entire analytic 
of order p. 

Proof of the lemma: Denote by PI the order of fl' 
Clearly PI ~ P (since fl = En 'Y~~" and 'Y~ ~ 'Y,,). In 
order to prove that PI ~ P we shall show that fl is 
majorized, on the positive real axis (which is the 
direction of fastest growth of all the functions that 
appear in this lemma) by a function of order p. 

Namely 
Definition: The Fourier transformation F is de- "" "" 

fined in S(P) by M~) = ~ 'Y"(~)n ~ ~ 'Yn(~ + n)" 

(Ff I Fu) = (f I u); f E S(f3) (3.34) 

for every u E S({3). 
= t t 'Y"r-n,,-·(n) = t t 2n'Y"n"~'n-·. 

n-O a-O 8 ,,-0 .-0 

By the assumption on f, the numbers 2"'Y" satisfy 
Theorem 3.11,.: The Fourier transformation is a 2"'Y" < n-1" for every '1/ such that '1/ < p-1 and for 

unitary operator in Scp). 
sufficiently large n. Chose '1/ > 1. Then 

Proof: It was seen above that U ~.hk == (U .~Yi.l hk = 
X"h" and that U~.h" = X;lh k • Because of Fh" = i-khk, 
the unitMY' operators U~o and U.~ commute with F. 
So 

(Ff, Fg)~ = (U~.U.~Ff, U~.U.~Fg)~ 
= (FU~.U.~f, FU~.U .. pg)~ 

= (U~.U.~f, UiJ.U.~g)~ = (f, g)~ q.e.d. 

H. Estimates of the Numbers J.k 

In the study of relationships between various 
spaces of type S it is often useful to know the asymp­
totic behavior of the numbers XI: as Ikl ~ 00. 

Notice that a(n; k) is a polynomial in K = Ikl. 
[See (2.15).] Consequently >.;2 is an entire fUnction 
of K. 

Theorem 3.15: Assume that the sequence {3" is 
such that the function En r'{3n is entire analytic 
(in ~) of order P < 1. 

Then the function 

K = Ikl (3.35) 

is entire analytic of the same order p. 

'" '" 
M~) ~ const + E r' E n- C1

-
1l"n-' 

.-0 
'" 

= const + E a.r' , (3.36) 
,-0 

where 

'" a. = E n- C1-
1l"n-' = 8-·'(1 + ... ) ~ 28-·' 

for sufficiently large 8. This shows that the series on 
the rhs of (3.36) defines a function of order ~ P and 
completes the proof of the theorem. 

4. FAMILmS OF HILBERT SPACES H(crj A) 

A Hilbert space H(a; A) is a space S({3) cor­
responding to the special choice (4.1) of the sequence 
{{3,,}. Results about H(a; A) are obtained by speciali­
zation or by sharpening of results about arbitrary 
spaces S ({3) (Sees. 4A -4D). The family of all spaces 
H(a; A) and H(ft; A) is totally ordered with respect 
to inclusion. It decomposes naturally into three 
subfamilies, denoted by :recl1l , :re(l), and :reo.), re­
spectively. The properties and applications of each 
of these are shortly discussed in Sees. 4E and 4F. 
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A. Definition and Dimension of H(aj A) 

Let a and A be positive numbers. Denote by 
H(a; A) the Hilbert space S({3) with 

{j,. = (A"r(an)r2 
• (4.1) 

That is: H(a; A) consists of the functions u E S 
such that 

(u, u) .. = 2: (u, M"u)A-2"r-2(an) 
" 

= 2: (u, hk» .. ;;2(hk , u) < co (4.2) 
k 

The numbers )..;;2 are given by (3.2) which becomes 

)..;2 = 2: A -2"r-2(an)a(n; k) (4.3) 

" 
where the numbers a(n; k) are defined by (2.12). 

Theorem 3.8 shows that H(a t
; A') C H(a"; A") 

if a' ::; a" or if a' = a", A' ::; A fl. This makes it 
convenient to order lexicographically the set of 
pairs {a; A}. So {a'; A'} < {a"; A"} means that 
either a' < a" or a' = a" and A' < A". 

Theorems 3.2 and 3.3 may be used to study the 
dimension of the spaces H(a; A). 

Theorem 4.1: If {a; Al ::; \!; 2-1} then H(a; A) 
contains only the element u = O. If {a; A} > 
{!j (8e)'} then H(a; A) is an infinite-dimensional 
Hilbert space in which the functions )..khk(x) form an 
orthonormal basis. 

Proof: By Theorems 3.2 and 3.3, one needs only to 
investigate the convergence of the series (4.3). The 
first inequality (2.16) shows that a(nj k) ~ n! for all 
n and all k. The second inequality (2.16) gives 
a(n; k) ::; (4n)" for n > !d + Ikl + 1. These esti­
mates and the Stirling formula allow a straight­
forward study of (4.3) which yields the assertion. 

Remark: The above theorem does not say anything 
about the case a = !, 2-' < A ::; (8e)" which can 
be studied with the help of sharper estimates. 

B. Properties of u E H(a; A) 

Theorem! 4.2: There exists a constant C(a; A) 
such that, for every x and for every u E H(a; A), 

lu(x) I ::; C(a;A) \lull" (Xl'" Xd)Il
d

l+2 

The same letter c will denote various constants. It is 
convenient to replace ml by ml + .1.ml where 
l.1.mll ::; ! and where m l is no longer required to be 
an integer. Write ~i = IXil/ACi = 1, ... , d) and 
I" = a(ml + S + i). Then (4.5) becomes Ix;",+b'ul ::; 
cA m'r(aml + as + la) Hull" or 

lui ::; cxibl~a+lcpl"r(JL) Ilull a • (4.6) 

By Stirling's formula, 

log (~-"lar(I"» ::; const + x(JL), 

where x(l") = I" (log I" - a-I log ~ - 1). Now I" will 
be chosen so as to give x(/L) its minimum value. 
The condition x'(/L) = 0 gives 1"0 = ~1/" and x(l"o) = 
- ~11". Substitution into (4.6) gives 

lu(x) I ::; c IX111+1 exp (_A-II" Ixd1/") ilull". (4.7) 

The assertion (4.4) follows; replace XI by Xi 

(i = 1, . . . ,d), take the product of the d inequalities 
so obtained and extract the dth root. 

The results of Sec. 3H can be used to display 
functions that belong to certain of the spaces H (a; A) 
and not to others. Notice that the function 
2: .. A-2nr-2(an)r" is of order (2a)-I. By Theorem 
3.15 we have 

)..;;2 = O(exp (lkII/2a+<» (4.8) 

for every positive E and no negative E. For any I" 
such that 0 < I" < 1 let Uji(x) be the function 

u,.(x) = 2: exp (-lkIP)hk(x). (4.9) 
k 

Then (u", up)" = 2:k exp (-2 Ikll'» .. ~2 and so (4.8) 
gives 

Theorem 4.3: If a > (2/L)-1 then Up E H(a; A). 
If a < (21")-1 then Up EE H(a; A). Here A is arbitrary. 

Another consequence of (4.8) is 

Theorem 4.4: If a' > a, then the natural embed­
ding of H(a; A) into H(a'; A') is of trace class. Here 
A and A' are arbitrary. 

Actually a stronger result holds: The eigenvalues 
of (the positive definite part in the polar decomposi­
tion of) the natural embedding operator not only 
have a finite sum but they behave, r.oughly speaking, 

(4.4) as 
exp (-lkI 1l2

" + IkI 1/2"').-.J exp (-Ikli "). 
Proof: Consider the inequality (3.10) with k = 0 

andm = {ml, 0 ... OJ. It is C. The Spaces H(ii; A) 

IX"'ul ::; Cr(aml + as)A"" lIull" 
(s = ad] + 1). 

Denote by H(a; A) the space S(P) corresponding 
to S(f3) = H(a; A). It is a Hilbert space. An ortho­

(4.5) normal basis of H(a; A) consists of the functions 
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-X;lhk where Ak = (En A - 2nr-2 (an)a(n; k) I-i. The 
Fourier transformation is a unitary operator in 
H(a; A). If {a'; A'} ~ {a; A} (See Sec. 4A), then 
H(a'; A') ~ H(a; A). It is convenient to write 
then, by convention, {a'; A'} ::; {a; A}. 

The results of Secs. 4B and 3F show that functions 
(respectively kernels) which are locally integrable 
and which do not increase too fast at infinity, belong 
to (Ha; A) [respectively define a bounded operator 
from H(a; A) into H(a; A)]. 

For typographical convenience, write 

E(a; A; x) = (Xl'" Xa)l!dl+2 

X exp (_A- lI"d- l t Ix,Il/")· (4.10) 

Then (4.4) becomes 

lu(x)1 ::; C(a; A)E(a; A; x) lIull" 
for every u E H(a; A). 

Theorem f,..5a: Let f(x) be measurable (with respect 
to the Lebesgue measure) and such that 

If = J If(x) I E(a; A; x) dx < 00. (4.11) 

Then f E H(a; A) and IIflia ::; C(a; A)h 

Theorem f,..5b: Let B(x; x') be measurable and 
such that 

IB = If E(a; A; x)B(x; x') 

X ECa';A'; x') dxdx' < 00. C4.12) 

Then uCx) --t f B(x; x')u(x')dx' is a bounded operator 
from H(a'; A') into HCa; A). Its bound norm does 
not exceed C(a; A)C(a'; A')IB • 

Theorem 4.5c: Let GCx) be measurable and such 
that G(x)E(a; A; x) belongs to L(2). Then u(x) --t 

G(x)u(x) is a bounded operator from H(a; A) into 
L(2). Its bound norm does not exceed C(a; A) times 
the L(2) norm of G(x)E(a; A; x). 

The proofs are straightforward and will be left 
to the reader. 

D. Entire Functions as Multipliers 

The results of Secs. 3E and 3F can easily be 
specialized to the case of the spaces H(a; A). An 
additional result is given by Theorem 4.8. 

Theorem 3.7 gives 

Theorem 4.7: Let B(z) = L:kB~k be entire ana­
lytic of order p < 2. (Here z = x + iy). Let {a; A} 

and {a'; A'l be such that 

~ (~, yn r-\a'n) 

X [L: IBk/A Ikl r(an + a /k/)]2 == N2 < ex>. (4.9) 
k 

Then u(x) --t B(x)u(x) is a bounded operator from 
HCa; A) into H(a'; A'). Its bound norm does not 
exceed the number N defined by (4.9). 

The remark before Theorem 3.7 shows that B(x) 
can be replaced by a differentiation operator B(D). 

In particular: 
If {a'; A'} > {a; A} then the bound norm of the 

natural embedding of H(a; A) into H(a'; A') does 
not exceed the number 

N = {L: (A/ A ')"[rCan)/r(a'n)n!. (4.10) 
n 

If B(x) is a polynomial then u --t Bu is a bounded 
operator from H(a; A) into any H(a'; A') such 
that {a'; A'} > {a; A}. 

Let B(x) be such that u --t Bu is a bounded opera­
tor from HCa; A) into HCa'; A'). For every f E 
H(a'; A') define Bf E H(a; A) by 

(Bf I u) = (f I B*u) (4.11) 

for every u E H(a; A). Here B*(x) is the complex 
conjugate of B(x). Then f --t Bf is a bounded operator 
from H(a'; A') into H(a; A). The bound norm of this 
operator is the same as that of u --t Bu. Statements 
about (4.11) can be easily deduced from the cor­
responding statements about u --t Bu and will be 
mostly omitted. 

It will now be shown that every analytic function 
of order p < 2 defines a bounded operator between 
some of the spaces H(a; A). 

Theorem 4.8: If B(z) is an entire function of 
order p < 2 (in every one of its arguments) and if 
a < p -t, then u --t Bu is a bounded operator from 
H(a; A) into any H(a'; A') such that a' > a. 

Proof: For all k except a finite number of them 
and for some E > 0 we have 

d 

IBkl ::; II k~(a+')k; ::; Ikl-<a+<llkl. 
i-I 

Notice that, by the definition of Euler's beta func­
tion 

r(an + a Ikl) = r(an)r(a Ikl)/B(an; a Iki) 

::; r(an)r(a Iki)a2n Ikl 2n+lkl-1(n + Ikltl 
so that 
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L: IRkl Alklr(an + a Ik\) :::; const + a2nr(an)2n
-
1 

k 

® L: rea Ikl)A Ik1k-(a+.) Ikl21kl 
k 

which shows that (4.9) converges. This proves the 
theorem. 

E. The Family :re<i1 ) 

The spaces H(a; A) fall naturally into three 
families corresponding to a < 1, a = 1, and a > 1. 

Definition: Denote by X(ill the family consisting 
of the Hilbert spaces H(a; 1)(! < a < 1), the space 
L(2), and the spaces H(Q:; 1)(! < a < 1). 

In this section, the space H(a; 1)(! < a < 1) will 
be denoted by H a , and H(Q:; 1) by Hr.. It will be 
shown that elements of H a have entire analytic 
continuations, that they decrease fast on parallels 
to the real "axis" and that X(iI) admits complex 
translations. 

Theorem 4.9: If u E H a then u(x) can be analyt­
ically continued to a function u(z) = u(x + iy) 
which is entire analytic (in everyone of its argu­
ments) of order p ::; (1 - a)-l 

Proof: This theorem follows from Theorem 3.6. 

Because of analyticity and Fourier invariance, 
complex translations of u E H a are easily studied. 
Let a = {at ... ad I be arbitrary complex. Define 
TaU by 

(Tau)(x) = u(x - a) = (F-Ie-;aZFu)(x) , 

where F is the operator of Fourier transformation 
and e- iaz is the operator of multiplication by e- iaz

• 

Since the exponential function is of order 1, Theorem 
4.8 shows that TaU E Ha' for every a' > a. In 
particular, a can be pure imaginary. This gives 

Theorem 4.10: If u E H a, then u(x + iy), con­
sidered in its dependence on x belongs to H a' for 
every a' > a and for every y. 

By Theorem 4.2 this means, in particular, that 
the analytic continuation of u E H decreases as 
exp (- L:~-l lXiiI/a) on parallels to the real "axis." 

These properties of u E H a are useful in the study 
of integrals of the form 

J fer; x)u(x) dx (uEH a ), (4.11) 

where f depends on a complex parameter r. They 
allow deformations of the path of integration in 
(4.11) and so facilitate the study of holomorphic 
families of elements of H a' Simple examples may be 

found in Ref. 7. A fuller discussion will be published 
elsewhere. 

F. The Family:re(1) 

If a = 1, then the elements of H(I; A) are ana­
lytic in Cartesian product of strips. 

Definition: Denote by X (I) the family consisting 
of the Hilbert spaces H(1; A)(O < A < co), the 
space L(2) and the spaces H(1; A). 

Theorem 4.10: If u E H(l; A), then u(x) can be 
analytically continued to a function u(z) = u(x + iy) 
which is holomorphic in the domain 

(i = 1, ... ,d). (4.12) 

Proof: It follows from (3.10) that 

I Dku(x) I < const IluliA r(lkDA 1k' (4.13) 

for every x, every k and every u E H(I; A). The 
assertion is then obtained by examination of the 
Taylor series of u. 

Entire functions of order 1 and finite type are 
multipliers between spaces of X(l). Many of the ex­
pressions previously introduced can be evaluated 
in closed form for a = 1. The resulting expressions 
are not given here. 

Another topic which will be treated in a later paper 
is the family X (1 ~) corresponding to 1 < a < co. The 
main feature there is that a support can be defined 
for every f E Hr.. 

5. NESTED HILBERT SPACES 

Many of the above constructions can be set into 
a general context with the help of the notion of 
nested Hilbert space (see Introduction). This is, 
technically speaking, a special kind of inductive 
limit of a family of Hilbert spaces (see Sec. 5c). It 
keeps many Hilbert space properties. For example, 
the adjoint of an operator A acts on the same space 
as A (Sec.5F). 

The results of this section are not used in the 
preceding sections. For this reason the proofs are 
omitted. They are simple and will be given elsewhere. 

A. Notation 

H" ... , H; ... are Hilbert spaces. 

ti, .,. ,gi ... are elements of H;. 
Ai; is a linear operator from H; into H;. 
(A,;);~ is the adjoint of Ai" defined by 

(g;, (A;;)t;/;) = (A;ig;, f;). (5.1) 

On the lhs of (5.1) the scalar product is in Hi; 
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on the rhs it is in H;. There is no need to indicate 
this by ( , ). or ( , ); since the subscripts are carried 
by the elements and the operators. 

B. Nesting Operators 

An operator E j • from H. into Hi will be called 
a nesting operator if 

(a) E;; is continuous and defined for all elements 
of HI' 

(b) E j • is one-to-one. 
(c) The range of E ji is dense in Hi' 
If the range of E j\ is not the whole of Hi then Eli 

will be called a proper nesting operator. 

I. == Ii means: There exists a k such that k ~ i, 
k ~ j and that E"d. = E"dj. 

Denote by HI the set of classes so obtained and by 
I, g, ..• elements of HI. If I. E H. belongs to the 
class I, then Ii is called a representative of I. 

Definition: HI is called a nested Hilbert space. 
For every i E I there exists the canonical embed­

ding Eli of H. into HI' If i ~ j then EnH • ;2 EuHi' 
If I E HI denote by J(/) C I the set of all i E I 

such that f has a representative fi in H •. That is: 

J(j) = Ii : f E Er;Hi}' 

D. The Numbers (f I g) 
Theorem 5.1: A continuous linear operator from For every i :::; 0, define U o. as the unitary operator 

Hi into H j is a nesting operator if and only if, in the 
polar decomposition appearing in the polar decomposition of Eo.: 

the operator L~;) is injective (i.e., 1-to-1 into) and 
the operator Uj • is unitary (rather than only iso­
metric). 

(5.4) 

For every i ~ 0, define Uo • as the unitary operator 
appearing in the polar decomposition of (E.oM: 

Theorem 5.2: The product of two nesting operators (E.o)~. = [(E'o):.Eio]iUoi = L!!) Uo•. (5.5) 

is a nesting operator. The adjoint of a nesting The last equality follows from the assumption (5.3). 
operator is a nesting operator. 

Given any i E I, define U.o as Uio = (Uo.).~ and 

C. Nested Hilbert Space 

A nested Hilbert space consists, roughly speaking, 
of a totally ordered family of Hilbert spaces together 
with nesting operators that identify elements of 
these spaces. In Secs. 3 and 4, these nesting operators 
were the natural embeddings. One of the spaces, de­
noted by Ho, has a distinguished role; in Secs. 3 and 4 
this was L (2). The other spaces come in pairs that 
are dual to each other in the sense of Sec. 3F. 

Let I be a totally ordered set, with an order­
reversing involution i ~ 'E. 

Assume that there exists an element 0 E I such 
that jj = o. 

For every i E I, let Hi be a Hilbert space. For all 
pairs i, j E I such that i > j (in the sense of the 
order in I), let Eij be a nesting operator from H j 

into H •. Assume 

(i > j> k). (5.2) 

For every i E I, define Eii as the identity in Hi' 
Assume that, for every i S; 0, the operators Eo. 

and E,o are related by 

write U" = U,oUoi' 

Definition: Let I and g be two elements of HI 
such that J(/) (l J(g) is nonempty. [Here J(g) is the 
set of all] with j E J(g).] Chose an arbitrary i E 
J (I) (l J (g) and define 

(I I g) = (Uodi' U.,g,). 

Theorem 5.3: The number (I I g) does not depend 
on the choice of i E J(/) (l J(g). It is linear in g, 
antilinear in I. It satisfies (f I g) = (g I 1)*. 

E. Operators in HI 

An operator in HI is defined so that its domain is 
not arbitrary but is a union of the Hilbert spaces 
H. that determine HI. Furthermore, the image of 
every H. must be contained in some H;. These 
conditions are always satisfied in the applications. 

Preliminary remark: Since the subspaces EuR. 
increase with i, an arbitrary union V EuH.(i1'E 
It C I) is equal to a union V EuH. (i E D, Dan 
initial subset of I, i.e, a subset such that i E D, 
j < i entails JED). 

(5.3 Definition: An operator A in HI is a linear trans­
In the union ViE1 Hi define an equivalence formation such that 

relation == by: (a) Its domain :D(A) ~ HI is of the form 
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(5.6) 

where i E D(A) and D(A) is a nonempty initial 
subset of f. 

(b) For every i E D(A) there exists a j = j(i) 
such that 

(5.7) 

The set J(ij A) of j E f such that (5.7) holds is a 
final subset of I. If i E D(A) and if j E J(ij A) 
then A defines the linear transfonnation Aji from 
H, into Hi by Aid, = (At);. The operator Ail is 
called a representative of A. Notice that Ai, is de­
fined on the whole Hilbert space Hi' In order to 
avoid pathology, assume 

(c) A;, is closed for every i E D(A) and for 
every j E J(ij A). 

It follows then that A;, is bounded. 
The study of A is equivalent to the study of the 

collection A;,(i E D(A), j E J(ij A) of bounded 
operators between Hilbert spaces. 

Denote by R(A) ~ I the final subset 

R(A) = U J(i; A). 
iED(A) 

F. The Adjoint 

It is easy to verify that the operators in HI fonn a 
vector space (i.e., that the sum of two operators and 
the scalar multiples of an operator are, again, 
operators in the sense of Sec. 5E). It will be shown 
elsewhere that every operator in HI has an adjoint 
which is also an operator in HI' This is to be con­
trasted with the case of continuous operators in more 

general spaces (where the adjoint acts on the dual 
space) and with the case of arbitrary operators 
in Hilbert space (where the adjoint need not be 
defined). 

G. The Algebra a 
The set of all operators in HI is not an algebra 

since the product of two operators need not be 
an operator in the sense of Sec. 5E. 

Definition: An operator A in HI is said to belong 
to a if D(A) = R(A) = f. 

Theorem: a is an algebra with involution. If 
A E a and if C is any operator in HI, then AC and 
CA are operators in HI; they need not belong to a. 

Remark: Another algebra of operators consists of 
all the operators in HI such that both D(A) and 
R(A) contain the element o. This algebra is iso­
morhpic to the algebra of all bounded operators in 
H •. It neither contains nor is contained in the alge­
bra a. 

The reader may find it worth while to examine the 
operators of Sec. 4 and to detennine the sets D(A) 
and R(A). 
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A large class of continuous representations of separable Hilbert spaces is constructed with the 
aid of representations of the canonical commutation relations (CCR) for a scalar boson field <p(!) 
and its canonical conjugate 'Ir(g). A representation of the CCR for a scalar boson field consists of 
two operator-valued functions V[g] and W[f], defined for all f, g in Schwartz's space S of real test 
functions, where V[g] and W[f] are unitary operators defined on some separable Hilbert space .{I, 
and which satisfy the commutation relations V[g]W[fJ = e-i(f.u)W[fJV[g]. These unitary operators 
are related to the field and its momenta by V[g] = e-ir<g), W[fJ = e;f'(f). We explicitly construct a 
family of such representations with the help of von Neumann's theory of infinite direct products of 
Hilbert spaces, the pertinent parts of which are reviewed. A continuous representation ~ of the 
Hilbert space .{I is composed of a linear vector space of complex, bounded, continuous functionals 
defined on S X S. These functionals are defined for all ~ E .{I by 1/I(f, g) = (V[g]W[J1CPo, ~). In this 
definition, <Po is a fixed unit vector in .{I. The properties of the functions in ~ depend on the choice 
of the representation of the CCR and on the choice of CPo. When ~ is constructed with the aid of an 
irreducible representation of the CCR, an inner product can be defined for all pairs of functionals 
in ~ by an intuitively meaningful, rigorously defined integral in the sense of Friedrichs and Shapiro. 
With this inner product, ~ is a complete Hilbert space congruent with .{I. As in all continuous repre­
sentations, a reproducing kernel exists and determines the functions in the continuous representation. 
One such space is closely related to a space of analytic functionals introduced by Segal and Bargmann. 
The representation of various operators as kernels and as functional derivatives is discussed. Finally, 
the construction of a vast number of unitary invariants for a representation of the CCR is used to 
establish the unitary inequivalence of uncountably many of the representations that we construct. 

1. INTRODUCTION 

IN the present paper we initiate a study of con­
tinuous representations of Hilbert space l

-
a for 

scalar boson fields, 4 extending our previous analysis 
of phase-space continuous representations for finitely 
many degrees of freedom. 6 It is well known that a 
field theory is in part more complicated than a 
many-particle problem for two reasons, namely, 
that a field has an infinite number of degrees of 
freedom, and that in many actual applications the 
representation of the operator algebra must be chosen 
reducible.a- lo The first complication has as a con­
sequence the existence of infinitely many, inequiva-

1 J. R. Klauder, J. Math. Phys. 4, 1055 (1963), referred 
to as I. 

2 J. R. Klauder, J. Math. Phys. 4, 1058 (1963). 
a J. R. Klauder, J. Math. Phys. 5, 177 (1964). 
4 A preliminary account of this work appeared in J. 

McKenna and J. R. Klauder, Bull. Am. Phys. Soc. 9, 85 
(1964). 

6 J. McKenna and J. R. Klauder, J. Math. Phys. 5, 878 
(1964) referred to as IV. References to this paper carry the 
prefix IV. 

6 K. O. Friedrichs, Mathematical Aspects of the Quantum 
Theory of Fields (Interscience Publishers, Inc., New York, 
1953). 

7 R. Haag, Kg!. Danske Videnskab. Selskab, Mat. Fys. 
Medd. 29, 12 (1955). 

8 Analogous results hold for fermions as well: R. Haag, 
Nuovo Cimento 25, 287 (1962); H. Ezawa, J. Math. Phys. 5, 
1078 (1964). 

9 H. Araki, J. Math. Phys. 1,492 (1960). 
10 H. Araki and E. J. Woods, J. Math. Phys. 4, 637 (1963). 
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lent, irreducible representations of the canonical 
commutation relations (CCR),6,7,9-l4 which is in 
striking contrast to the existence of only a single 
irreducible representation for finitely many degrees 
of freedom. l5 The second complication of fields makes 
it mandatory that we analyze and be prepared to 
employ representations other than just the standard 
Fock representations. To this end this paper is 
largely devoted to a rigorous construction of myriads 
of inequivalent, irreducible representations of the 
CCR together with their intimately associated 
Hilbert spaces of bounded, continuous functions­
the continuous representations-()n which the par­
ticular representation of the CCR is the natural, 
regular representation. Vast numbers of reducible 
representations of the CCR may, of course, be ob­
tained by direct sums or direct integrals of various 
irreducible representations, but we do not primarily 
concern ourselves with these questions here. 

Operator properties for a scalar field are sum­
marized in the CCR, a proper statement of which is 

11 L. Garding and A. S. Wightman, Proc. Nat. Acad. Sci. 
40, 617 (1954); A. S. Wightman and S. S. Schweber Phys. 
Rev. 98, 812 (1955). 

12 I. E. Segal, Trans. Am. Math. Soc. 88, 12 (1958). 
13 J. M. Cook, J. Math. Phys. 2, 33 (1961). 
14 J. S. Lew, thesis, Princeton University, 1960 (unpub­

lished). 
1li J. von Neumann, Math. Ann. 104, 570 (1931). 
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given in "Weyl form" in terms of unitary operators, 
and which is defined as follows:12

•
H 

Definition 1.1. Let '0 be a countably infinite­
dimensional real linear vector space, called the 
"test function space," and let I X g -? (I, g), I, g E '0 
be a nondegenerate, bilinear map of '0 X '0 into R, 
the field of real numbers. Let ~ be a complex 
Hilbert space, and 9 the group of all unitary trans­
formations of ~ onto itself, where the unit operator 
is denoted by I. Then two maps, '0 ~ g, and '0 4 9 
are said to be a representation of the canonical 
commutation relations if they satisfy: 

(1) W[j]W[f'] = W[t + f'], W[O] = I; (1.1) 

(2) V[g]V[g'] = V[g + g'], V[O] = I; (1.2) 

(3) V[g]W[j] = e-w·Q)W[f]V[g]; (1.3) 

(4) For each fixed f, g E '0, the operators W[tf) 
and V[tg] are weakly continuous functions of t, 
-oo<t<oo. 
We later indicate that Condition (4) is sufficient to 
guarantee the existence of self-adjoint, smeared 
field operators l{)(f) and their canonical momenta 
reg) such that V[g] = e-,"(Q), W[f] = ei'P(f). In a 
sense to be made precise later, l{)(f) and reg) satisfy 
the familiar commutation relations [l{)(f) , reg)] = 
i(f, g)I. It should be noted that U[f, g] == V[g]W[f] 
gives a representation up to a factor of the additive 
group of '0 X '0. 

While the preceding definition is not the most 
general, it is more than adequate for our purposes. 
Indeed, we limit ourselves at the outset only to 
representations defined on separable Hilbert spaces. 
Furthermore, since it is conventionally assumed that 
a scalar boson field describes a dynamical system 
with countably many degrees of freedom, we shall 
employ a countably-infinite direct product space as a 
natural setting for rigorously defining representations 
of such a field. Superficially these two goals appear 
to be incompatible for if I ~n : nEd}, where d is 
some index set, is a set of separable, infinite-dimen­
sional, complex Hilbert spaces, the complete direct 
product space (CDPS) TInEa ® ~n as defined by 
von Neumann, 16 is not a separable space when .i 
has a countable infinity of elements. However, 
as von Neumann has shown, the CDPS ilnEa ® ~n 
can be decomposed into an uncountable number of 
separable, mutually orthogonal, closed subspaces. 
These spaces are called incomplete direct product 
spaces (IDPS), and the representations of the CCR 

16 J. von Neumann, Composito Math. 6, 1 (1938). 

we explicitly and rigorously construct in Sec. 2 are 
defined on incomplete direct product spaces. Our 
construction of the CCR on an IDPS is aided con­
siderably by the extensive investigation of such 
Hilbert spaces by von Neumann. However, we are 
under no illusion that such constructions provide an 
adequate means to discuss all representations of 
the CCR. 

As a further specialization of the conditions of 
Definition 1.1, we take our test function space '0 to 
be the space of all real-valued functions of three real 
variables I(X1, X2, xa) = I(x), which are infinitely dif­
ferentiable and which decrease at infinity faster than 
any inverse power of \x\. The mathematical proper­
ties of this space, usually denoted by S, have been 
studied by Schwartz,17 and the physical motives 
involved in the choice of S as a test function space 
for field theory have been discussed recently by 
Wightman. 18 

The simultaneous study of large classes of repre­
sentations of the CCR's and the Hilbert spaces in 
which they operate is particularly convenient in the 
continuous-representation formalism. It is our 
purpose in Sec. 3 to rigorously define such spaces, 
and to establish the intuitive and natural representa­
tion of the CCR that scalar-field continuous repre­
sentations provide, for the representations defined 
in Sec. 2. A continuous representation <£ of the 
IDPS ~ is composed of a linear vector space of 
complex-valued, bounded functionals defined on 
S X s, which are defined for all 'It E ~ by 

!f(f, g) = (<p[f, g], 'It), (1.4) 

wherein the vectors of the overcomplete family of 
states (OFS) e; which IIgenerates" the representa­
tion 1 are defined by 

<P[f, g] == V[glW[j]<po == Ufj, g]<po. (1.5) 

In (1.5), the "fiducial vector" <Po may be chosen as 
one of a generally large class of unit vectors in ~, 
and the particular choice will have a certain influence 
on the properties of <£. For each such choice of <Po, 
every 1/;(t, g) E <£ will be a continuous function on 
S X S, if S is supplied with the usual locally convex 
topology and S X S is supplied with the product 
topology. 

The particular representation of the CCR enters, 
essentially, in two ways. Firstly, it is necessary that 
the family of operators U[t, g] be cyclic, i.e., that a 
vector <Po exists such that the closed space spanned 

17 L. Schwartz, Theorie des distributions (Hermann & Cie., 
Paris, 1957), Vol. II. 

18 A. S. Wightman, Theoretical Physics (International 
Atomic Energy Agency, Vienna, 1963), pp. 11-58. 
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by UrJ, g]Wo, for all I, g E S, is .p itself. This is a 
relatively weak restriction, and is in fact realized in 
all physical applications analyzed to date.s- 10 Sec­
ondly, the representation of V[gJ and WrJJ influences 
the form of the inner product in ~. Since S X s, 
considered as an additive group is not locally com­
pact, no Haar measure is known to exist. Thus one 
cannot talk of the square integrability of the func­
tionals 1/I(j, g) over the group in the conventional 
sense. However, when an irreducible representation 
is used, it is true that an integral and measure in the 
sense of Friedrichs and Shapiro19 exist, i.e., an inte­
gral defined as the limit of a sequence of integrals. 
It is in this extended sense that we employ the 
terminology integral and measure. However, the 
relevant limits by which they are defined will always 
be carefully stated. 

In particular, we shall establish that ~ is a separa­
ble, complete Hilbert space for which the inner 
product ( , ). is explicitly given by 

(1/1, X). = lim J 1/I*(j(N), geN»X(j(NlJ g(N» 
N-", 

X dp,(j(N), g(N» = (w, A), (1.6) 

if ~ is defined with the aid of an irreducible repre­
sentation and if 1/I(j, g) = (<p[f, g], w) and X(t, g) = 
(<p[1, g], A) are arbitrary elements in ~. In this 
expression 

dp, (f(N)' geN» = II (dp,. dq,./27r), 
1,.I:5,N 

I(N)(x) = :E p,.h,.(x); p,. = (h,., f), 
1 .. I:5,N 

geN)(X) = :E q .. h .. (x); q .. = (h .. , g), 
Inl$N 

n = (n" n2, na), n. ~ 0, 
i = 1,2,3; Inl = nl + n2 + na, 

and 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

is a basis for S composed of Hermite functions. The 
plausibility and intuitive meaning of (1.6) is straight­
forward. Since we are dealing only with continuous 
functions 1/1(1, g), it is clear that each function is com­
pletely determined by its values on a dense set. The 
integral (1.6) is defined simply as the limit of a 
sequence of integrals whose integrands are evaluated 
on a dense set as N becomes arbitrarily large, since 
test functions of the form (1.8) and (1.9), for all 
finite N, are dense in S. Consequently, ~ is a com­
plete, separable Hilbert space composed of bounded, 
continuous functionals of test functions 1/I(j, g) 
(and not of equivalence classes of functionals) with 

19 K. O. Friedrichs and H. N. Shapiro, Integration of 
FunctionalB," Lecture Notes, New York University Institute 
of Mathematical Sciences, 1957, Chap. 1. 

an inner product given by (1.6). We call ~ a con­
tinuous representation since it is also congruent,lIO 
i.e., isomorphic and isometric, with the original 
Hilbert space. 

A single space ~ by no means contains all bounded, 
continuous functionals that are square integrable in 
the sense of (1.6); in fact, uncountably many mu­
tually orthogonal continuous representations ~ 
exist. As an example of one such space, we briefly 
discuss in Sec. 3 the special continuous representa­
tion that is closely connected with the space of 
analytic functionals studied by Segal21 and Barg­
mann.22 

In every space ~ there exists a natural, canonical 
representation of the operators V[gl and WrJ] satisfy­
ing Definition 1.1. In particular, the transformations 
defined by 

(V[g]1/I)(f', (I') = 1/I(f', g' - g), 

(W[jJ1/I)(f', g') = ei (f,Q')1/I(f' - I, g') 

(1. 12a) 

(1. 12b) 

are unitary in the inner product (1.6) and fulfill the 
Weyl relations (1.1)-(1.3). In fact U[1, g] constructed 
from (1.12) is just the regular representation up to a 
factor of the additive group of S X S. From this 
point of view, different representations are not 
distinguished by how they act on a common set of 
functions, but rather on which set of functions they 
act, which in turn depends on the choice of the 
fiducial vector <Po. Of course, a congruent map of one 
space ~' onto a different space ~ always exists; 
but under this map the image of the regular represen­
tation would no longer be given by (1.12). Thus the 
two views of "how" or "which" are completely 
complementary, although there is some advantage 
to be gained by a consistent use of the simple, 
canonical form (1.12), particularly with a view 
toward constructing reducible representations of the 
CCR by direct sums or direct integrals. 

While this paper is devoted to continuous repre­
sentations for a single scalar field, brief mention is 
made of analogous representations pertaining to K 
independent scalar fields. Not only do such multi­
field representations have their own intrinsic interest, 
but they provide a rapid and simple method to 
generate reducible representations of the single 
field CCR by a process akin to that of Lie group 
contraction.23 

20 A. E. Taylor, Introduction to Functional Analysis 
(John Wiley & Sons, Inc., New York, 1958). 

211. E. Segal, Illinois J. Math. 6, 500 (1962); Mathematical 
Problems of Relativistic Physic8 (American Mathematical 
Society, Providence, Rhode Island, 1963), Chap. VI. 

12 V. Bargmann, Proe. Nat. Acad. Sci. 48, 199 (1962). 
23 E. Inoml and E. P. Wigner, Proe. Nat. Acad. Sci. 39, 

510 (1953); E. J. Saletan, J. Math. Phys. 2, 1 (1961). 
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The smeared field operators cp(t) and 1I"(g), whose 
existence is ensured by Condition 4 of Definition 1.1, 
are a common starting point for physical applica­
tions. Their representations, which Eq. (1.12) cor­
rectly implies may be expressed with the help of 
smeared functional derivatives, are taken up in 
Sec. 4. 

Finally we discuss an important set of unitary 
invariant "tags" for a representation of the CCR 
that frequently enables the inequivalence of two 
representations of the CCR's to be ascertained. 
Furthermore, these tags may be completely derived 
from the functions in the continuous representation. 
In particular, we prove that the class of spaces and 
their canonical transformations of the form (1.12) 
which we rigorously define corresponds to uncount­
ably-many inequivalent representations of the CCR. 
lt is ultimately to be hoped that the simple func­
tional methods we advocate can be used to study 
the inequivalence of representations of the CCR 
by a generalization of the classical group orthogo­
nality relations.2

' Support for this hope is suggested 
by the proof by Bargmann25 of the von Neumann 
uniqueness theorem for representations of the CCR 
for finitely many degrees of freedom based simply 
on the square integrability of the functions in (£ 

for any fiducial vector, which we proved in Part IV. 
Applications of a special continuous representation 

have been made by Glauber26 and by Sudarshan27 

in the analysis of the coherence properties of light. 
Segal21 has used his closely associated space of 
analytic functionals to study properties of free, 
relativistic scalar boson fields. A broader applica­
tion of continuous representations to model field 
theories with nontrivial interactions is currently 
under stud~8 extending the first named author's 
earlier dynamical studies for finitely many degrees 
of freedom.2

•
3 

2. DEFINITION OF IRREDUCmLE SCALAR 
FmLD REPRESENTATIONS 

A. Discussion of Incomplete Direct Product Spaces 

Since we have to make use of some of the detailed 
properties of the IDPS, we outline its construction 
and list a few of its properties here. For further 
information we refer the reader to the cited paper of 
von Neumann.16 

24 L. Pontrjagin, Topological Groups (Princeton University 
Press, Princeton, 1946), Chap. IV. 

26 V. Bargmann (to be published). 
t~ R. J. Glauber, Phys. Rev. Letters 10, 84 (1963); Phys. 

Rev. 131 2766 (1963). 
17 E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963). 
28 ~ preliminary report on part of this work appeared in 

J. R. Klauder, Bull. Am. Phys. Soc. 9, 85 (1964). 

Let A be an arbitrary index set, and to each 
n E A assign the separable Hilbert space -P ... 

Definition 2.1. A sequence of vectors {x .. }, x .. E S)n, 
n E A, is called a Co sequence if and only if 

2: IIIXnll- 11 < 0:>. 
"Ell. 

To each Co sequence is assigned an element 
TInEA (8) Xn, called a Co vector, with the norm 
IITInEA (8) xnll = TInEA IIXn!l· 

Definition 2.2. Two Co vectors are said to be equiv­
alent TInEA (8) Xn ~ IInEA (8) An, if and only if 

2: l(xn, An) - 11 < 0:>. (2.1) 
"Ell. 

The inner product of two equivalent Co vectors is 

(II (8) x .. , II (8) An) = II (xn, An), (2.2) 
nE~ nE~ nE~ 

while the inner product of two inequivalent Co 

vectors is zero. (We use the convention that inner 
products are linear in the second variable and con­
jugate linear in the first variable.) 

The set of all finite linear combinations of Co 

vectors with complex coefficients forms a linear 
vector space. The inner product defined for Co vectors 
is extended by linearity so that this space becomes an 
inner-product space. The closure of this space yields 
the complete direct-product space, TI .. EA (8) S)". 

The relation ~ is an equivalence relation which 
decomposes the set of all Co vectors into mutually 
disjoint equivalence classes. The equivalence class 
of a given Co vector, TInEA (8) Xn, is denoted by 
E(IInEA 0 Xn). 

Definition 2.3. The closed linear subspace of 
IInEA (8) S) .. which is spanned by all the Co sequences 
in a given equivalence class E is called an incomplete 
direct-product space and is denoted by 

B 

II (8) ~ ... nEil. 
If the power of the index set A is countably infinite, 

IInEA 0 ~n is not a separable Hilbert space, but 
each IDPS is a separable, infinite-dimensional 
Hilbert space. 

The following lemma provides a very useful, 
alternative construction of a given IDPS. 

Lemma 2.1. From a given equivalence class E 
pick a Co vector, X = IInEA (8) Xn, IIxnll = 1 for all 
n EA. Then 

B 

II 0 S)" "EA 
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is the closed linear subspace of II .. EA ® S) .. which 
is the closure of the set @x of all finite linear combina­
tions of vectors, with complex coefficients, of the 
form A = TInEA ® An, A" E S)n, n E A, where 
A" = x" for all but a finite number of indices n. 

Definition 2. 4. We call the Co vector X = TInE A ® 
X .. of Lemma 2.1 the product reference vector, and the 
corresponding Xn E S)n, n E A, are called the product 
components of X. The dense set of vectors @x of 
Lemma 2.1 is called the reference set. 

Lemma 2.2. Let Zn, n E A be a sequence of com­
plex numbers, and let TInEA ® Xn be a Co sequence. 
Then TInEA ® ZnXn is again a Co sequence satisfying 

TI .. EA ® x .. ~ TI"EA ® Z .. X,. 

if and only if LnEA Iz,. - 11 < co. If this condition 
holds, then TInEA ® Z,.X" = (TInEA Zn)(TI .. EA ® X,,). 

B. The Space S of Test Functions 

In our construction of the CCR, an alternate 
characterization of the test function space S is 
needed, and we include a discussion of it here. First 
we introduce the following standard notation: We 
set n = (nl' n2 , na), where the ni, i = 1, 2, 3, are 
nonnegative integers, and Inl = n l + n2 + na. If 
x = (Xl' X2, xa) is any real three-vector, then 

x" = x~'x;'x;', dax = dXI dX2 dxa, 
and 

Definition 2.5. The space S is the real, linear' 
topological space whose elements consist of all those 
real valued, Ca functions I(x) , which in addition 
satisfy the condition that x"Dmf(x) is bounded for all 
n and m. A locally convex topology is defined in S by 
the family of seminorms 

p;;(f) = sup Ix"Dml(x)l, Inl ~ j, Iml ~ k, (2.3) 

where sup is taken over x, Inl ~ j, and Iml ~ k, 

be the set of Hermite functions. Then the set of 
functions h .. (x) = hn, (xI)h". (x2)h .. ,(xa), n E A, is a 
basis for S, and every I(x) E S possesses the expansion 

(2.5) 

where 

P .. = (h .. , f), (2.6) 

and the series (2.5) converges uniformly and ab­
solutely.30 

Lemma 2.3. A sequence of real numbers {P .. }, 
n E A, is related to a function I(x) E S by the rela­
tions (2.5) and (2.6) if and only if 

lim n~·n;·n;·p .. = 0 (2.7) 
Inl-ioCIO 

for every set of nonnegative integers rI, r2 , and ra. IT 

Corresponding to each sequence satisfying (2.7) there 
is exactly one function in S. 

If I(x) = LnEA p"hn(x) and g(x) = LnEA q"h,,(x) 
are two elements of S, then it is easily shown that 

(f, g) = L Pnq ... (2.8) 
nEA 

The following lemma relates convergence criteria 
in the two characterizations of S. 

Lemma 2.4. Let fi(x) = L: .. EA p~j)hn(x), j= 1,2", . 
be a sequence of functions in S. 

Let 

and 

Then the statement lim i _", li(X) = 0 in the topology 
of S is given equivalently by either 

(1) lim E;:~ = 0 for every n, mEA, 

for j, k = 0, 1, 2, .... The pairing of I and g E s or 
is given by (2) lim o~j) = 0 for every rEA. 

(f, g) = 1 f(x)g(x) dax. 
R. 

(2.4) 

The space S is a nonlocally compact, complete, 
Hausdorff space with a countable basis.17 Since S has 
a countable basis, it is only necessary to consider 
sequences (and not directed nets) when proving the 
convergence of functionals on S.29 

Let A be the set of all possible triples, n = (nl' n2 , na), 

of nonnegative integers, and let hr(x), r = 0, 1, 2,' .. 

;_co 

In the remainder of this paper, we occasionally 
refer to a sequence {P .. } as an element of S, meaning 
thereby the function f(x) E S which has {Pn} as its 
"coordinates. " 

C. Construction of the Operators V[g] and W[J] 

Let L2(R) denote the separable Hilbert space 
whose elements are (equivalence classes of) complex 

29 J. L. Kelley, General Topology (D. Van Nostrand Com- 80 G. Sansone, Orthogonal Functions (Interscience Pub-
pany, Inc., Princeton, New Jersey, 1955), Chap. 2. Iiahers, Inc., New York, 1959). 
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valued, Lebesgue square-integrable functions de­
fined on the real line R.20 Let f(x) E L2(R); then a 
canonical, irreducible representation of the Weyl 
form of the single-particle commutation relations 
is defined by15 

(Vo[q]f)(x) = f(x - q), (Wo(P]f)(x) = e'''"f(x). (2.9) 

The two continuous, one-parameter groups of 
unitary operators Vo(q] and Wo(p] satisfy the com­
mutation relation 

In addition, we can write 

Vo[q] = e- iaP
, 

where P and Q are self-adjoint operators whose 
existence is ensured by Stone's theorem.a1 It is well 
known that P and Q are defined by 

(Pf)(x) = -i df(x)/dx, (Qf)(x) = xf(x); 

the domain of P, ~p is the set of all f(x) E L2(R) 
such that f(x) is absolutely continuous on every 
bounded interval, and df(x)/dx E L 2 (R), and ~Q' 
the domain of Q, is the set of all f(x) E L2(R) such 
that xf(x) E L 2 (R). It was proved in Sec. IV.3 of 
Ref. 5 that every vector in L2(R) is cyclic with 
respect to Vo(p, qJ. 

Let ~ be the countable set of all triples of non­
negative integers, and assign to each n E ~ the 
Hilbert space ~ .. = L 2 (R). According to Lemma 2.1, 
an IDPS is characterized by the choice of a product 
reference vector. Among all such vectors we confine 
our attention to a distinguished subset defined as 
follows: 

Definition 2.6. Denote by m the set of all Co 

vectors X = TInEA &> X .. whose product components 
satisfy the following conditions: 

(1) \\X .. \\ = 1, n E ~; 
(2) Xn E ~P (\ ~Q' n E ~; 
(3) \\Px .. \\ + \\Qx .. \\ ::; A(\nl), n E ~, where 

A(\ni) is some polynomial depending on X. 

We now begin our construction of a representation 
of the CCR on ~x for X E m as follows. For each 

M 

A = L: aj(II &> X~j» E @x, 
i-I nEil 

the reference set, put 
M 

V[gJA = L: aj(II &> Vo[q,,]X~"), (2. 11 a) 
j-1 nEt. 

31 F. Riesz and B. Sz.-Nagy, Functional Analysis (Fred­
erick Ungar Publishing Company, New York, 1955). 

M 

- ~ II I'V\ [p (i) W[f]A - L.. aj( ~ Wo .. ]X .. ), (2.l1b) 
;-1 nE~ 

where f E S, g E S, and I P .. } and I q .. } are the coordi­
nates of t and g, respectively. 

We next establish that Conditions 1-3 on X E m 
imply that the vectors on the right-hand sides of 
(2.11a) and (2.11b) are indeed elements of ~x. It is 
clearly sufficient to show that each term in the sum 
is an element of ~x. Consider, for example A (i) = 

IInEt. &> Vo[qn]X~j), a term in the sum (2.l1a). This 
a Co vector, for 

and the series on the right of (2.12) is a convergent 
series because X~j) ~ Xn for at most a finite number of 
values of n, and II"Et. &> x .. = X is by definition a 
Co vector. Furthermore, we can show that A (0 ~ X; 
by Definition 2.2, this is true if and only if 

~ \ (j) \ L..nEt. (Vo[q .. ]X .. ,x .. ) - 1 < ex) , (2.13) 

but again because X~j) ¢ x .. for at most finitely-many 
n values, Eq. (2.13) is true if and only if 

L: I(Vo[q .. ]x", x .. ) - 11 < ex). (2.14) 
.. Et. 

In Sec. IV 4 we showed that the function F .. (q .. ) = 
(Vo[q .. h .. , Xn) is a continuous, bounded function, 
possessing a continuous bounded derivative, and for 
which 

F~(q .. ) = i(Vo[q .. ]Px .. , Xn). (2.15) 

The mean-value theorem, coupled with the fact 
F,,(O) = 1, yields 

F .. (qn) - 1 = iq .. (Vo[Oq .. ]Px .. , x .. ), (2.16) 

where 0 < (j < l. Schwartz's inequality and Proper­
ties 1 and 3 of Definition 2.6 then lead, in view of the 
unitarity of V o[q1, to 

\F .. [q .. ] - 1\ ::; \qn\ \\PXn\\ ::; \q .. \ A(\nl). (2.17) 

Therefore 

L: I(Vo[q .. ]x .. , x .. ) - 11 
.. Et. 

::; L: Iq .. 1 A(lnl) < CD, (2.18) 
nEt. 

convergence following because I q .. } satisfies (2.7) 
and A(lnl) is a polynomial. Thus A(i) ~ X, and 
hence by Definition 2.3, A (j) E ~x. The proof that 
each term in the sum (2.l1b) is an element of ~x is 
the same, and we omit it. 

Equations (2.l1a) and (2.l1b) thus define two 
obviously linear transformations of the dense set @x 
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into 5)x. From the unitarity of Vo[q] and Wo[p] and 
the form of the inner product in 5)x, it is simply 
shown that IIV[g]AII = IIW[f] AI I = IIAII for all 
A E ®x. In standard fashion V[g] and W[f] can be 
uniquely extended by continuity to isometric map­
pings defined on all of ~X.32 It is obvious that 
V[O] = W[Oj = I, where I is the unit operator. 

We now show that if cJ> = nnE.:!. ® CPn E ~x is an 
arbitrary Co vector (we now allow cP" :;t. x .. for infi­
nitely many n values), then we can make the defini­
tion of V[g] and W[fl more explicit than above; 
namely that 

V[g]<I> = TI ® Vo[q"]cp,,, (2.19) 
nEA 

and 

(2.20) 

Again we prove only one case, that of (2.19), the 
proof of (2.20) being just the same. Consider the 
sequence cJ>N = TInE.:!. ® cP~, N = 1, 2, ... t where 
cP~ = cP", Inl ::; N, cP~ = x .. , Inl > N. It is clear that 
<I>N E @x, N = 1,2, ... ,and it is readily shown that 
n"E.:!. ® Vo[q,,]CPn ~ nnE.:!. ® VO[q .. ]x .. E ~x, that 
lim N-'" II<I> - <I>NII = 0, and that 

lim II II ® Vo[q .. ]cP" - V[q]cJ>NII = o. 
N-+co flEa 

Since V[g]cJ> = limN_a> V[g]cJ>N, this completes the 
proof. 

We can immediately apply this fact to deduce 
several important properties of V[g] and W[f]. For 
any vector A E @x, and g, g' E $, we can apply 
V[g'J to both sides of (2.11a), and make use of line­
arity and (2.19) to obtain 

M 

V[O'] V[gJA = :E aj(II ® Vo[q:] Vo[q,,]A~j». (2.21) 
i-I n.E~ 

However, Vo[q~]Vo[qn] = Vo[q~ + q .. ], n E ~, and 
{q~ + q .. } is just the coordinate sequence of 0' + g. 
Therefore, for all A E ®x we have V[g']V[g]A = 
V[O' + g] A. Again, since ®x is dense in ~x, this 
relation must hold by continuity for all A E ~x. 

Therefore 
V[g']V[g] = V[g' + gJ. (2.22) 

In just the same fashion we can prove that 

W[f']W[f] = W[f' + tJ. (2.23) 

In particular, for every cp E ~x, we have 

cp = V[g](V[ -g]<I» , and <I> = W[f](W[ -f]<I», 
II S. Bochner and K. Chandrasekharan, Fourier Tran8-

forms (Princeton University Press, Princeton, New Jersey, 
1949), pp. 92-93. 

which proves that the ranges of the isometric opera­
tors V[gl and W[fl are both equal to the whole space 
~x. In other words, V[g] and W[fJ are unitary opera­
tors for every f, g E S. 

The fulfillment of the Weyl form of the CCR is 
also a consequence of Eqs. (2.19) and (2.20). If 
A E @x, then 

M 

V[g]W[f]A = L: a/en ® Vo[q,,]Wo[P .. ]A!il), (2.24) 
i-I f'lE.o. 

and 
M 

W[tJV[g]A = L: a;(n ® Wo[P,,]Vo[q .. ]~il). (2.25) 
;-1 "E.:!. 

Next notice that the easily proved inequality 
le- i

" ••• - 11 ::; Ip .. I·lq .. 1 implies that 

:E le-;""<lo - 11 ::; :E (lp .. I·lq .. \) < co, (2.26) 
neA "E.:!. 

where the series on the right of (2.26) converges 
because {P .. } and {q .. } satisfy (2.7). Then, according 
to Eq. (2.10) and Lemma 2.2, each term in the sum 
on the right-hand side of (2.24) is just 

II e-;"··· = e-; 'LnE.:!. " ••• = e- iC/ •• l (2.27) 
"EA 

times the corresponding term in the sum on the 
right-hand side of (2.25). In other words, we have 

V[g]W[tJA = e-w .• lW[tJV[g]A. (2.28) 

We have proved (2.28) for all A E ®x, but by 
continuity it holds for all A E ~x. We collect the 
results so far proved into 

Theorem 2.1. Let X E ~ be a product reference 
vector satisfying Conditions 1-3 of Definition 2.6. 
Then X determines an IDPS ~x and, by means of 
Eqs. (2.11a) and (2.11b), two functions, V[g] and 
W[f], are defined each of which map all of S into 
the group @ of all unitary operators on 5)x. These 
two operator-valued functions on S satisfy Conditions 
1, 2, and 3 of Definition 1.1. 

In what follows we shall refer to the V[g] and W[f] 
of Theorem 2.1 as the unitary maps determined by X. 

Continuity of Operators 

We next show that V[g] and W[fJ are strongly 
continuous functions on S. Again we give the proof 
only for V[g]i the proof that W[f] is continuous is 
just the same. Because V[g] is unitary and 

V[g + g'] = V[g J V[o'] , 

it is sufficient to prove continuity at the origin. 
Let {gil, j = 1, 2, ... be any sequence of functions 
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converging to zero in the topology of s. We show 
first that 

lim IIX - V[gi]XII = 0, (2.29) 
i-co 

where X = II"E~ ® Xn is the product reference 
vector. Using the definition of V[g'], and noting 
that X is a unit vector we immediately find that 

!!X - V[g;]XW 

= 2 Re [1 - II (Vo[q~]x .. , x .. )], (2.30) 
.. E~ 

where {q~} are the coordinates of gf. Since {q!} are 
the coordinates of a null sequence, given an arbitrary 
triple of positive integers, r = (rl' T2 , ra), according 
to Lemma 2.4 there exists a constant c., which is 
independent of j, and which satisfies 

(n~' + l)(n;' + l)(n;' + 1) Iq~1 < Cn n EA. (2.31) 

The infinite product in (2.30) converges absolutely 
and uniformly with respect to {q!l if and only if the 
series L:nE~ I (V o[q!]x .. , Xn) - 11 converges uni­
formly.33 However, according to (2.18), this series 
is majorized by L:nE~ Iq~1 A(ln\), which in turn, 
according to (2.31), is majorized by 

Cr L: A(ln\)/(n~' + l)(n;' + l)(n;' + 1) 
.. E~ 

for a suitable choice of T. This last series is conver­
gent independently of j which proves the uniform 
convergence. 

Because of this uniform convergence, given any 
E > 0, there exists an integer N I, which is independ­
ent of j, such that 

IT (Vo[q!]xn, x .. ) = 1 + 6;, 16; I < E. (2.32) 
1t.I>N. 

Each of the functions (Vo[q!]x .. , x .. ) is continuous, 
and since q~ ~ 0 as j ~ co for each n, we can pick 
an integer J. such that 

IT (Vo[q!]x .. , x .. ) = 1 + Pi' 
Inl:5N f 

Ip;\ < E foraH j 2:: J.. (2.33) 

From (2.30), (2.32), and (2.33), it follows that for 
all j 2:: J., 

\IX - V[gi]X W 
::;; 2(16;1 + !p;\ + !6 f llpi\) < 4E + 2E2. (2.34) 

Since E was arbitrary, this proves (2.29). 
If A E @x, then A consists of a finite sum of 

product vectors, each of whose products components 

"K. Knopp, Theory and Application of Infinite Series 
(Blackie & Son Ltd., London, 1928), p. 381. 

differ from the product components of X for only a 
finite number of n values. Therefore it is readily 
seen that 

lim IIA - V[g;]AII = 0 (2.35) 
;_al 

holds for all A E @x. Since @x is dense in -\)x, and 
V[g] is unitary, it follows that (2.35) holds for all 
A E -\)x. We summarize these results as 

Theorem 2.2. If X E m is an arbitrary product 
reference vector, then the unitary maps V[g] and 
W[f] determined by X are strongly continuous in 
the topology of S. 

We now state two immediate corollaries: 

G orollary 1. For each fixed g E S, and f E S, 
V[tg] and W(tfl are strongly continuous functions of 
t, - co < t < co, in the usual topology for R. 

Proof. Let t E R, and let ti be any sequence of real 
numbers such that lim;_., ti = t. Then for any f E S, 
td ~ tf in the topology of S, because 

lim sup Ix" Dm[td(x) - tf(x)]! 
i-a) :J: 

= lim I tj - tl sup Ix" Dmf(x) I = 0 
{-tal X 

for all n, m. Then by Theorem 2.2 it follows that 
V[tg] and W(tf] are the strong limits of V[tjg] and 
W[tdl. respectively, which completes the proof. 

Corollary 2. The unitary map of S X S ~ @defined 
by {f, g} ~ V[g]W[f] == U[f, g] is strongly continuous 
on S X S supplied with the product topology. 

Proof. The proof is almost identical to the simple 
proof of Lemma IV 3.2, a similar result for finitely 
many degrees of freedom, and is omitted. 

Irreducibility 

We now show that if V[g] and W[f] are defined by 
(2.11), then the self-adjoint set of operators mt = 
{V[g], W[f]} (for all f, ginS) is irreducible. We show 
this by proving the equivalent result that :lit", the 
bicommutator of :lit, is equal to ffi, the ring of all 
bounded operators in ~x. Let n be a fixed element 
of A, and let :lit.. = {V[q .. h .. ], W[p .. h .. ]}, where q .. 
and P .. take on all real values and h .. (x) is a fixed 
basis element of S. Then mt .. is a self-adjoint set of 
operators, and since :lit" C :lit, then :lit~' C mt". 
If we set mt .. = {Vo[q .. ], Wo[p,,]} for all real P .. and q .. , 
then mt .. is a self-adjoint set of unitary operators in 
-\) .. [= L 2 (R)], and there exists a straightforward 
isomorphism between the rings mt" and mt!' .10 

However, the set mt .. is irreducible by assumption, 
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so mr~' ffi .. , the ring of all bounded operators in 
4' ... Thus ;m~' is the image, il3 .. , of the ring of opera­
tors ffi.. under this isomorphism for each nEd. 
However, von Neumann has shown that the ring 
generated by all the il3 .. , nEd, is just the ring il3 of 
all bounded operators in 53X.16 Since il3 .. C ;m" for 
each nEd, this implies that ~" = il3, and the 
proof is completed. 

Since;m is irreducible, it follows that every '1' E 53x 
is a cyclic vector for ;m. Furthermore, if we let 
m = {U(f, g]} (all {I, g} E S X S) then clearly 
;m c m, so m is also an irreducible set of unitary 
operators. We sum up these results on irreducibility 
in 

Theorem 2.3. If X E ffi is an arbitrary product 
reference vector, and V[g] and W[f] are the unitary 
maps determined by X, then the self-adjoint set 
of operators ~ = {V[g], W[m is irreducible. Further­
more, the set of operators m = {U(f, g]} is also 
irreducible. As a consequence every '1' E 53x is a 
cyclic vector for both ;m and m. 

This completes our construction of the Weyl form 
of the CCR and we state this result as 

Theorem 2.4. The strongly continuous unitary 
maps V[g] and W[/] determined by any product 
reference vector X E ffi, I, g E S, form an irreducible 
representation of the CCR. 

It is clear from our construction, that if Xl E ffi 
and X 2 E ffi are equivalent (Definition 2.2), then 
they determine identical representations of the CCR. 
For in that case -Px, == 53x., and then Eqs. (2.19) 
and (2.20) show that both representations are identi­
cal when confined to product vectors (whose finite 
linear sums are dense in 53x). It would thus be more 
appropriate to say that each equivalence class in ffi 
determines a distinct representation of the CCR, 
and in the future, when we speak of the representa­
tion determined by X, we shall mean the representa­
tion determined by the equivalence class of which 
X is a representative. 

Discussion 

We should like to emphasize the essential simplic­
ity of the representations of the CCR which we have 
constructed and the close conceptual relationship of 
them to the Fock representation. Indeed, if the 
product reference vector is chosen so that x .. == <Po, 
where <Po is the ground state of an harmonic oscil­
lator, then the resulting representation of the CCR 
determined by X is just a Fock representation.1o 

However, the representations constructed here are 

not all unitarily equivalent to Fock representations; 
this important fact is proved in Sec. 4. 

It might be thought that a more general repre­
sentation of the CCR could be constructed if in­
stead of requiring that 53 .. == L2(R) for all nEd, 
we let 53 .. be an arbitrary, separable Hilbert space, 
and if furthermore in each -P .. we pick an irreducible 
but otherwise arbitrary representation of the single­
particle commutation relations, V .. and W ... The 
construction of V[g] and W[f] could then be carried 
through just as before. However, a theorem of 
von Neumannl5 guarantees the existence of a uni­
tary map Tn of 53 .. onto VCR), with the property that 
Tn V .. [q .. ]T;l = Vo[q .. ] and T"W .. [p .. ]T;1 = Vo[p,,] for 
each nEd. It is then easy to show that the "more 
general" representation is in fact unitarily equiv­
alent to one of our canonical representations. 

D. Field Operators 

We turn now to a discussion of the infinitesimal 
generators of the operators W(f] and V[g] determined 
by a product reference vector X E ffi, that is, to the 
field operators <p(t) and ?reg). Since W[f] and V[g] 
satisfy Conditions 1, 2, and 4 of Definition 1.1, 
it follows that for any fixed f and g E s, W[tt] and 
V[tg] form two continuous, one-parameter groups of 
unitary operators.SI Then a theorem of StoneS I 
asserts the existence of two self-adjoint (generally 
unbounded) operators <Pet) and ?reg) such that 

W[tfl = e't'('U), V[tg] = e-·t .. ,o). (2.36) 

We denote by 1)'("f) and 1) .. '0) the domains of the 
respective operators <Pet) and ?reg). From Stone's 
theorem 

<Pet) = lim (l/it)(W[tfl - /), (2.37) 
t-O 

where the limit is taken in the strong sense, and 
'1' E ~'("f) if and only if lim (l/it) (W[tl] - /)'1' 
exists. The same statements are true of V[tg] and 
?r(g) , except that it must be replaced by -it in the 
denominators of the corresponding expressions. 

It has been shown by Lewl4 that given any repre­
sentation of the CCR, V[g] and W[f], which satisfies 
the conditions of Definition 1.1, then the field 
operators <pet) and ?reg), defined with the aid of 
Stone's theorem, are "linear functionals on S" in 
the following restricted sense: Let 53 be the Hilbert 
space in which the given representation is defined. 
Let (fl, ... , I .. ) be any finite set of functions in S. 
Then there exists a dense linear manifold ~ C 53, 
invariant under V[tf,] and W[tt.] on which all finite 
linear combinations and finite products of <p(f,) and 
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1r(f.) are defined. Furthermore, on this linear mani­
fold, '" and 1r satisfy 

",(at; + {3tk) = acp(t;) + {3",(fk); 

1r(at; + 13M = a1r(t;) + {37r(fk), 

[",(t;) , CP(fk)] = [1r(f;) , 1r(fk)] = 0; 

[",(t;) , 1r(fk)] = i(f;, tk)I, 

C2.38) 

(2.39) 

where a and {3 are real numbers and j, k = 1,2," " n. 
An additional fact, which is of use later in this 

paper, is the following. Let '1' E !l .. uo); then for all 
f, g E S, U[f, g]'1' E ~"uo)' For from the commuta­
tion relations satisfied by V[g] and Wet], and from the 
definition of U[f, g], it can easily be shown that 

(l/it)lW[tfo] - I}U[j, g]'1' 

= U[f, g]e;' (10 .u) (1/it) I W[tto] - I}'1' 

+ U[t, g](1/it)[ei/(fo.U) - 1]'1'. (2.40) 

Therefore 

lim (l/it){W[tto] - I} U[t, g]'1' 
'-0 

= U[t, g]cpCto)'1' + (to, g)U[f, g]'1'. C2.41) 

This implies that U[f, gj'1' E ~<puo>' and that further 

cp(fo)U[t, g] = U[t, g][cp(to) + (to, g)I]. (2.42) 

In the same way, it can be shown that if '1' E ~ .. (go), 

then U[f, g]'1' E !l .. (u.), and also 

1r(go) U[t, g] = U[f, g ][1r(go) + (f, go)I]. (2.43) 

We discuss now, without proof, several additional 
properties of the field operators for a representation 
determined by a product reference vector X. We 
omit the proofs, for while not difficult, they are. a 
little lengthy, and the results proved are not essentIal 
for the purposes of this paper. They do, however, 
shed some light on the nature and structure of the 
representations we have constructed. 

Let cp(t) and 1r(g) be the field operators in a repre­
sentation determined by the product reference vector 
X = IInEd @ Xn. Let ~x be the set of unit product 
vectors A = IInEd @ An, such that An E ~" (\ !lQ, 
all n E .1, IIQAnl1 + IIPAnl1 < A(lni) for some fixed 
polynomial A (ini), and An r!' Xn for only a finite 
number of values of n. Then A(lnl) can be chosen so 
that X E ~x, so that the set of all finite linear 
combinations of elements in ~x is dense in 5;lx, and 
so that 

Furthermore, if A E ~x, then 

cp(f)A = L: Pn(QA" @ II Q9 A .. ), (2.44) 
nEd mEd-(n) 

1r(g)A = L: qnCPA" @ II @ Am). (2.45) 
nEi1 mE.6.-(n) 

Assume now that the product reference vector X 
satisfies, in addition to Conditions 1, 2, and 3 of 
Definition 2.7, the two conditions: 

(4) Xn E ~P' (\ ~Q' (\ ~QP (\ :t)PQ, n E .1, 

(5) IIP2xII + IIQ2xII + IIPQxl1 

+ IIQPxll ::; R(ln!), n E .1, 

where R(ln\) is a fixed polynomial. Let 5Bx C ~x be 
the set of all A E ~x that also satisfy Conditions 4 
and 5 above. Then R(ln!) can be chosen so that the 
set of all finite linear combinations of elements in 
5Bx is also dense in ~x, and each A E 5Bx is in the 
domain of all operators of the form ",Cfl)CPCf2), 
1r(gl)1r(g2), ",(ft)1r(gl) , and 1r(gl)CP(ft). The CCR are 
naturally satisfied in 5Bx. One can clearly continue 
in this fashion and construct representations of 
the CCR determined by a product reference vector 
X so that a dense set containing X is in the domain 
of all polynomials in ",(t) and 1r(g) of some fixed 
degree. 

E. A Generalization to Multifield Representations 

We sketch now in briefest outline a construction 
parallel to the foregoing development that yields 
additional representations of the CCR. Weare 
motivated in part by a possible formulation pertinent 
to a finite number, K, of independent scalar fields 
for which some special invariance is desired, such as a 
rotational invariance for an isovector field. Also 
several examples of von Neumannl6 and of Araki 
and W oodslo suggest this generalization as well. 

The generalization we wish to consider is the 
following. Instead of assuming that in each ~ .. there 
is defined an irreducible representation of the single­
particle commutation relations, we assume that there 
is defined in each ~n an irreducible representation of 
the commutation relations for K degrees of freedom, 
and that the test function space S will be replaced 
by SK, the K-fold direct product of S with itself 
supplied with the product topology. 

The elements f of SK are now ordered K-tuples of 
test functions in S, f = (fl, ... ,fK), and a pairing is 
introduced into SK by 

K 

(f; g) == L: (f;, g;). C2.46) 
i-I 

It is not difficult to show that SK is isomorphic to a 
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space of infinite sequences of K-tuples of real num­
bers, the isomorphism being given by f ~ {P .. }, 
n E ~, where P .. = (PI .. , P2 .. , ..• , PK .. ), and Pi .. is 
the nth coordinate of f i in an expansion in Hermite 
functions. We shall call p" the nth coordinate of f. 
Let 

K 

Pn·q .. = L Pinqin, 
i-I 

then {P .. } is the coordinate sequence of some element 
in SK if and only if 

1· r, .. r. I I 0 1m n l n2 na Pn = 
'nl-toCO 

for every set of nonnegative integers rl, r2 , ra. If 
f ~ {Pn}, g ~ {q .. }, then (f; g) = LnEA P .. ·qn. Fur­
thermore if f(;) = {p(;)} J' = 1 2 ... then , n.'", 
lim j _", fW = 0 in the topology of SK if and only if 

lim sup n~'n;'n;' Ip~j) I = 0 
i_tD 

for every set of nonnegative integers rl, r2 , and ra. 
We now set .p" == L2(Rk) for each n E ~, where 

L2(RK) is the Hilbert space of square integrable 
functions of K real variables. We adopt the canonical, 
irreducible representation of the K-particle com­
mutation relations given by 

(V()[q]f)(x) = f(x - q); (W()[p]f)(x) = eip,xf(x), 

for which Eq. (2.9) is replaced by 

U()[p, q] == Vo[q]Wo[P] = e-iP·qWo[P]Vo[q]~ (2.47) 

Recourse to Stone's theorem3l shows the existence of 
2K self-adjoint operators P; and Q;, j = 1,2,"" K 
such that 

Vo[q] = exp (-i t q;P i ), 
,-1 

W()[p] = exp (i t p;Q;). 
,-1 

Now replace Definition 2.6 by 

Definition 2.7. Denote by ~K the set of all Co 

vectors, X = TI .. EA ® X.. E .p, whose product 
components satisfy the following conditions: 

n E~; 

If now everywhere in the construction of V[g] and 
W[f], P .. and q .. are replaced by p" and q .. , V()[q,,] 
and Wo[P .. ] are replaced by VO[qn] and Wo[P,,], and it 
is always assumed that X E ~K' then it will be seen 
that new representations, V[g], W[f], of the CCR are 
defined. The unitary operators V[g] and W[f] are 
strongly continuous in the topology of SK, the set 
{V[g], W[f]} is irreducible, and 

V[g]W[f] = e-Hf;c>W[f]V[g], (2.48) 

which is the generalization of the CCR to K inde­
pendent scalar fields. 

The representations (2.48) for K scalar fields also 
can be used to generate representations of the CCR 
for a single field, which in general are reducible. For 
this purpose, we introduce two linear homomor­
phisms 

F :f-d", G :g~gC (2.49a) 

of SK into itself whose image spaces we denote by 
s1: and S;, i.e., F : Sx == s1:, G : SK == S;, respectively. 
We next require two linear, invertible isomorphisms 

M :gC ~ g (2.49b) 

of s1: and S; onto S, respectively, such that 

(fC; gC) = (f , g) (2.50) 

for each pair fC, gC. The transformations (2.49) are 
analogues of singular transformations of Lie group 
parameters,2a and we call such a mapping, as re­
stricted by (2.50), a contraction. If we put V[g] == V[gC] 
and W[f] == W[f C

], then it is clear from (2.48) and 
(2.50) that these operators obey the CCR for a 
single field. An example of one of the simplest con­
tractions is obtained if we set F = G, L = M, and 
for which, if f = (fl, f2' ... , fK)' we put F(f) == 
fO = (fl, 0, ... , 0) and L : (fl(X), 0, ... ,0) = 
ft(x) E s. It is quite possible that contracted single 
field CCR can be catalogued as to algebraic type in 
terms of the product components x .. E V (RK ) , 

n E ~, of the product reference vector, along lines 
similar to those used by Bures34 to analyze the 
classic example of von N eumann.16 

3. CONSTRUCTION OF IRREDUCIBLE SCALAR 
FmLD CONTINUOUS REPRESENTATIONS 

(1) /lx .. /I = 1, 
K 

(2) x .. E () (~Pi (\ ~Q)' n E~; 
i-I 

K 

(3) L: (IIQiXn" + "PiX .. ") ~ A(lni), 
i-1 

A. Structure of the Continuous Representation 

A continuous representation of Hilbert space as 
defined in Part I is a realization of a given Hilbert 

n E~, space by a space of bounded, continuous functions 
defined on a topological space called the label space. 

where A(/nl) is some polynomial depending on X. II' D. J. C. Bures, Composito Math. 15, 169 (1963). 
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The construction is carried out with the aid of a 
family of unit vectors, called an overcomplete family 
of states (OFS), which satisfies the three postulates 
listed in 1. We construct in Sec. 3 continuous repre­
sentations of ~x, the IDPS determined by the 
product reference vector X E m. The label space 
is.c = s X S, the direct product of test function 
space with itself, when supplied with the product 
topology. We shall adopt for our OFS the collection 
~ of unit vectors 

~[f, g] = U[f, gJ~o (3.1) 

for all {I, g I E.c, where ~o E ~x is an arbitrary (but 
fixed) unit vectorin ~x, II~oll = 1, called the fiducial 
vector, and U[f, g] = V[g]W[f] is defined by the 
representation of the CCR determined by X. 

For each W E ~x we define the functional 

""(f, g) == (~[/, g], w), (3.2) 

which in view of Schwartz's inequality is bounded, 

I ""(f, g) I ::;; Ilwll, (3.3) 

and which is continuous on .c by Corollary 2 of 
Theorem 2.2. We denote by <£ the set of functionals 
""(I, g) determined by allw E ~x. Equation (3.2) may 
be viewed as a map C of <£x onto <£, C : W ~ ""(f, g). 
This map is clearly linear, so that <£ forms a complex, 
linear vector space composed of bounded, continuous 
functionals. It should be remarked that while <£ 
appears to depend on both X and ~o, actually ~o 
alone determines <£. This is because ~o uniquely 
determines ~x, and ~x in turn uniquely determines 
the representation of the CCR. When we wish to 
emphasize the dependence of <£ on ~o, we refer to 
the set <£ corresponding to the fiducial vector ~o, 
or add to <£ distinguishing decorations. 

We now introduce an inner product into <£ which 
will turn <£ into a complete Hilbert space. When this 
is done, we shall be able to show that <£ is congruent 
to ~x (i.e., the map C is one-to-one and isometric) 
and so <£ is indeed a continuous representation of ~x 
as defined in Part I. 

B. Introduction of Inner Product 

A Sequence of Projections 

We introduce into ~x a sequence of projection 
operators AM, M = 1, 2, '" . These projections are 
defined for each Co vector A = IInE.6 ® A,. E -Px by 

AMA = II ® A,. ® II ® (x .. , A")x,,. (3.3) 
InlSM I .. I>M 

The definition is then extended by linearity and 
continuity to all of -Px. It is readily proved that AM 

is a projection operator, that Al < A2 < ... , and 
that limM _", AM = I (strong convergence). Further­
more, the equation 

defines a one-to-one, isometric mapping, BM , of the 
closed subspace AM-PX onto II,,,,sM ® -p,.. 

Projection Functionals 

Our steps now roughly resemble the methods 
described by Friedrichs and Shapiro.19 For every 
W E ~x, we consider the sequence of vectors 
WM = AMw E ~x, M = 1, 2, ... , and the cor­
responding functions 

""M(t, g) = (~[f, g], AMw) E <£, 

for all M. In addition, we introduce for each 
{f, g I E.c the truncated test functions 

feN) == L: p"h", g(N) == L: q"h .. , N = 1,2, ... , 
I"ISN I"ISN (3.5) 

wherep" = (f, h,,), q" = (g, h,,), and!(",) == i, g( .. ) == g. 
Let us then consider the set of functions 

""M(feN) , g(N» = (U[f(N) , g(N)1~O' AlI[w) (3.6) 

for all M and N. 
Assume first that N 2:: M. Then since ANAM = 

AM, (3.6) becomes 

""M(f(N) , g(N» = (ANU[f(N) , g(Nl]~o, AlI[w) 

= (U[f(N), g(N)]AN~O' AlI[w). (3.7) 

The last result holds in view of the commutation of 
the operators AN' and U[f(N), g(N)] whenever N' 2:: N, 
as is clear from (3.3), (2.19), and (2.20). By assump­
tion, the set of operators Vo[q .. ]Wo[p,,] is irreducible; 
thus in the closed subspace AN~X C ~x, the family 
of operators induced by U[/(N), g(N)] is irreducible. 
Consequently, each function ""M(f(N" g(N» in (3.7), 
N 2:: M, is (apart from a uniform scale factor 
IIAN~olD of the form of those functions in a continu­
ous representation based on an irreducible representa­
tion of the canonical commutation relations for 
finitely many, 7r(N) , degrees of freedom, where 
7rCN) = (N + 1)(N + 2)(N + 3)/6, the number of 
triples n such that In! ::;; N. Such continuous repre­
sentations have been studied exhaustively in Part IV. 
Theorem IV 3.1 then states that such functions are 
square integrable, and that moreover 

J "":C!(N), (f(N»AMCf(Nl, (f(N» II (21) dp" dq" 
I .. ISN 7r 
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whenever N ::::: M, '1', A E S)x. If we adopt the 
convention, 

dJ.l. (f (N), g (N» II (21) dPn dqn, 
Inl $N 7r 

(3.9) 

then from the properties of the projection operators 
AM, we find that 

('1', A) = lim lim J ifi:(f(N), g(N» 
M-to:> N-HD 

(3.10) 

This formula is characteristic of Friedrichs­
Shapiro-type integrals. However, due to our restricted 
class of "cylinderlike" functionals-for instance, 
ifiM(f(N), g(N» does not even run over all continuous 
V(R,,(N) X R,,(N» functions-we can say considera­
bly more. 

Interchangeability of Limits 

We next show that the order of taking limits in 
(3.10) can be interchanged. We recall the standard 
criterion35 for interchanging the order of limits in a 
double sequence: If aMN and limM_", limN_a> aMN = l 
exist, then limN_a> limM_a> aMN exists and has the 
value 1 if limM_a> aMN = bN exists uniformly in N 
and limN_'" bN exists. 

In the application of this criterion to (3.10) we 
must first examine 

aMN['l', A] == J ifi:(f(Nh g(N» 

X AM(f(N), g(N» dJ.l. (f(N) , g(N» (3.11) 

when M > N. From (3.6) it follows that 

ifiM(f(Nh g(N» = (Urf(N) , g(N)]AM<PO' AMi'), (3.12) 

and a similar expression holds for AM(f(NJ, g(N»' In 
this case the family of operators induced by 
U[f(N)' g(N)] in AMS)x is reducible since M > N. 
Theorem IV 3.1 cannot be used to evaluate the inte­
gral (3.11), but we can appeal to the theorem of 
von Neumann 15 on the representation of the com­
mutation relations for finitely many degrees of free­
dom to get a bound on (3.11). This theorem states 
that any representation for 7r(N) degrees of freedom 
may be decomposed into a direct sum of irreducible 
representations for 7r(N) degrees of freedom, which 
may contain a countable infinity of terms. Thus we 
can introduce the following decomposition: 

L 

ifiM(f(N) , g(N» = 2: (U.rf(Nh g(NJ1<P.;'!:, 'lt~), (3.13a) 
r=l 

86 R. Courant, Differential and Integral Calculus (Blackie 
& Son Ltd., London, 1949), p. 105. 

L 

AM(f(N) , g(N» = 2: (U.rf(N) , Y(N)]<P!, A~), (3.13b) .-1 
where, for all <P E S)x, 

L L 

AM<P == <pM = L: EB <P~, II<pMW = L: 11<p~W, 
r-1 .-1 

(3.14a) 

and 
L 

U[f(N) , Y(N)l = L: EB U.rf(N) , g(Nd (3.14b) .-1 
wherein L is a positive integer or infinity, and each 
Ur[f(N), g(N)] corresponds to an irreducible repre­
sentation for 7r(N) degrees of freedom. From our 
earlier work, fi it follows that 

ifiMr(f(N) , YeN»~ == (Urrf(N) ' Y(N)]<P!, 'lt~), (3.15) 

as well as AMr(f(N), g(N», is a continuous and square­
integrable function on R,,(N) X R,,(N) for each r. 
Then 

J I ifitr(i(N) , Y(N»AM.(f(N) , giN»~ I dJ.l. (f(N), giN»~ 

S {J lifiMr(t(N) , g(N)W dfJ (t(Nlt g(N» 

X J IAM.(f(N) ' Y(N»1
2 

dJ.l. (f(N) , YeN»~ y 
11<p~IIII'lt:rIIII<p:'IIIIA:"II· (3.16) 

Whence 

'~1 J lifi'k.(f(N) , Y(N»AM.(f(N), g(N» I dfJ (f(NlI YeN»~ 

~ {~ 11<P~IIII'lt:rII}{~ II<P:'IIIIA~II} 

s {t 11<p~WY{t 11'lt~WY 
X {~ 11<P:'WY{t IIA:"WY 

= II <P: W II'ltM II II AM II, (3.17) 

which shows that 

ifi:(f(N) , Y(N»AM(f(N) , g(N» 
L L 

= L: L: ifi'kr(f(N) , g(N»AM.(f(N) , YeN»~ 
r=I .-1 

is an integrable function, and that the series may 
be integrated term by term.36 In particular, we find 

36 P. R. HaImos, Measure Theory (Van Nostrand, Prince­
ton, New Jersey, 1950), p. 114. 
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the interesting result when M > N that 

J 1~.3Hf(NlI Y(N»XMCt(N) , Y(N»! dp. (tCN) , Y(N» 

::; IIAM~oW lIAM'lrlllIAMAII 
::; IIAM.lrIIIiAMAII::;II.lrIIIIAIi. (3.18) 

As a special case of this formula, consider its applica­
tion to the norm of A == 'lr - Ap'lr, P < M. Then 
since AHA = AM'lr - Ap'lr, (3.12) and (3.1S) lead to 

J I~M(/(NlI YeN»~ - ~P(f(N)' Y(N»1
2 

dp. (f(N), YeN»~ 

::; 'JAM'lr - Ap'lrW. (3.19) 

Equation C3.8) shows that the inequalities (3.1S) 
and (3.19) also hold if M ::; N. Now, making use of 
(3.1S) and (3.19) we easily get the inequality 

laMN['lr, A] - aPN['lr, All::; 11'lrIIIIAMA - ApAll 
+ IIA II IIAM'lr - Ap'lrll· (3.20) 

This shows that aMN is a Cauchy sequence in M 
and that the convergence is uniform with respect to 
N. Thus the existence of a unique limit bN = 
limM-+a> aMN is established, and the convergence is 
uniform in N. Furthermore, IbNI ::; 11'lr11 !IAI! since 
aMN satisfies the same inequality for all M and N 
[apply Schwartz's inequality to (3.11) and employ 
(3.1S)]. Since every bounded sequence of complex 
numbers has at least one convergent subsequence, 
there always exists a set {N;} such that limi-+a> bNi 
exists. Since 

lim lim aMNj['lr, AJ = (w, A) 
M_(X) , ...... oe> 

for any subsequence such that N i -+ (Xl as j -+ (Xl, an 
application of the criterion for interchanging the 
order of taking limits shows that for any subsequence 
such that lim;-+a> bN I exists, the limit is the same. 
However, any bounded sequence, all of whose con­
vergent subsequences have the same limit, con­
verges.37 Consequently, we have proved that 

lim lim J ~JCf(Nl! Y(N»XM(f(N), YeN»~ 
N_O:) M ...... oo 

X dP.(f(N) , YeN»~ = ('1', A). (3.21) 

We now notice from (3.19) that any projection 
functional ~M(/(Nlt Y(N» converges in the mean 
in LZ(Rr(N) X R .. (N» to a function 

Vi(f(Nl> Y(N» E L 2(R .. (N) X R .. (N», 

and in addition, a subsequence {Mi} exists such that 
a7 K. Knopp, Ref. 33, p. 394. 

lim ~Mi(/(Nl> YeN» = ViC/(N)' YeN»~ 
i-..oo 

almost everywhere. However, Schwartz's inequality 
applied to (3.6) gives I~MC/(Nh YIN»~ - ~(f(N)' Y(N»I ::; 
IIAM'lr - wll, which shows that 

lim ~M(/(NlI YIN»~ = ~(f(N)' Y(N» 
M-",. 

everywhere in R .. (N) X R .. (N)' Therefore, we can 
identify Vi(/(N), YeN»~ and ~(/(N), YeN»~, and in (3.21) 
we can then take the limit with respect to M under 
the integral sign. Hence for all ~, X ~, and not 
merely for projection functionals, 

lim J ~*(f(N)' Y(N»X(f(N) , YeN»~ 
N-+a> 

X dp.Cf(Nl> YeN»~ = ('lr, A). (3.22) 

If ~(/, Y), X (f, y) E ~,we define their inner product 
to be 

(~, X)e == 

lim J ~*(/(NlI Y(N»X(/(NlI YeN»~ dp. (/CN) , Y(N»' 
N-+a> (3.23) 

(We have appended a lie" to the inner product in ~ 
to differentiate it from the inner product in ~x.) 
Now by definition ~(/, y) and X(f, g) are the images 
respectively of 'lr, A E ~x under the mapping C 
defined by (3.2), and from (3.22) we have (~, X). = 
('lr, A). With this equality it is a simple matter to 
show that ( , ). has all the properties required of an 
inner product. Furthermore, the map C of all of ~x 
onto ~ is an isometry, so C is one-one, and ~ being 
the isometric image of a complete inner product 
space is itself a complete inner product space, i.e., a 
Hilbert space. We summarize these results as 

Theorem 3.1. Every ~(/, y) defined by (3.2) is a 
bounded, continuous function defined on the label 
space .£ = S X S. The set ~ of all such functions 
forms a Hilbert space whose inner product is de­
fined by (3.23). The space ~ is congruent to ~x and 
is called the continuous representation of ~x. 

For the sake of brevity in what follows, we in­
troduce 

Definition 3.1. Let 

J ~*(f, g)X(f, g) dp. (I, y) 

= lim J ~*Ct(N)' Y(N»XCt(N) , YeN»~ dp. (t(Nlt Y(N»' 
N ... ", 

(3.24) 
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c. Inverse Map 

Let 1/;(f, g) = (<I>fj, g], w) for some fixed W E ~x. 
Consider the sequence of linear functionals defined 
for all A E ~x and each positive integer N by 

'ltN(A) = f l/t*Cf(N) , g(N» 

X (<I>[f(Nlr g(N)J. A) dp. Cf(N)' g(N»' (3.25) 

If in inequality (3.18) we let M -t (X) , the resulting 
inequality implies that I 'ltN(A) I ~ IIAII 11'11\\. Then 
by the Riesz representation theorem31 there exists 
a unique vector 'liN such that wN(A) = ('ltN, A). 
Therefore, we can write 

'ltN = f l/t*Cf(N), g(N»<I>fj(N) , U(N)] dp. Cf(N) , U(N», 

where this integral is a Pettis integral.38 We ,have 
already proved that limN .... ., ('ltN, A) = ('It, A) for all 
A [see (3.22)]. Therefore, 'It is the weak limit of 'liN. 
We list this result as 

Theorem 3.2. Let '11 E ~x, then . 

'It = lim f (<I>[f (N), 9 (N) J. 'It) 
N .... ., 

X <I> [f (Nl> 9 (N)] dp. (f (N), 9 (N» , (3.26) 

where each integral is defined in the sense of Pettis, 
and the limit is taken in the weak sense. 

This result enables us to give the inverse of the 
map C of ~x onto (£: 

C : w-t l/tCf, g) = (<I>[f, gJ. '11), 

C-1 
: l/tCf, g) -t W = lim wN • 

N .... " 

Just as in Part IV, we can define for each positive 
integer N the operator on ~x 

IN= J <I>[f(N) , g(N)l<I>[f(N) , g(Nd
t 

dp. Cf(Nl> g(N» (3.27) 

which maps each '11 E ~x onto 

IN'll = f (<I>[f(N) , g(N)]' 'It) <I>[f(Nl> g(N)] dp. (f(N) , g(N»' 

(3.28) 
We have proved in Theorem 3.2 that 

lim (IN'It, A) = (w, A) 

for all 'It, A E ~x. We list this result as 

Lemma S.l. The unit operator I in ~x is the weak 
88 E. Hille and R. S. Phillips, Functional Analysis and 

Semi-Groups (American Mathematical Society, Providence, 
1957), pp. 76-78. 

limit of the sequence of operators IN defined by 
(3.27) and (3.28). 

We can now assert that the set @5 of unit vectors 
<I>[f, g] == U[f, g]<I>o satisfies the three postulates (given 
in Part I) which define an overcomplete family of 
states. Postulates 1 and 2 simply assert that @5 is 
arcwise connected (obvious) and that <I>[f, g] is a 
weakly continuous function on .e (Theorem 2.2, 
Corollary 2). The third postulate states that the 
set @5 must span ~x and that a resolution of the 
identity into an integral over projection operators 
exists. The set @5 does span ~x, for if (<I>[f, gj, 'It) == 
0, {I, g} E .e, then by (3.22), '11 = O. The resolution 
into projection operators is given in Lemma 3.1. 
We list this result as 

Lemma S.l. The family @5 of unit vectors, <I>[f, gj == 
U[f, gj<I>o, where {I, g} E .e = s X S, and U[f, gJ = 
V[gj W[fl is constructed from the irreducible repre­
sentation of the CCR determined by the product 
reference vector X E m, forms an OFS for any 
fiducial vector <I>o E ~x. 

D. Reproducing Kernels and Aronszajn Spaces 

Reproducing Kernel 

Let G: be a continuous representation of ~x cor­
responding to the fiducial vector <I>o. We associate 
with G: a functional XC!', g'; f, g), called the reproduc­
ing kernel, and defined by 

x(f', g'; f, g) = CU[f', g']<I>o, U[f, uj<I>o). (3.29) 

For fixed {f, g} E .e, x(f', g'; f, g) is an element of G: 
when considered as a function of If', g'}, as follows 
directly from (3.29). If 

1/;(f', 0') = (U[f', g'1<I>o, '11) E (£, 

then for every {f, g} E .e, it follows from Theorem 
3.1 and Eq. (3.22) that 

(xCI', g'; f, g), l/tCf', g'». 

= f x(f, g; 1', g') 1/;CI', g') dp. (f', g') 

= (U[f, g]<I>o, 'It) = 1/;(f, U), (3.30) 

a relation which gives to X its name. The same rela­
tion yields the idempotent property 

J x(f', g'; f", g") X(f", g"; f, g) dp. (f", g") 

= x(f', g'; I, g). (3.31) 

In addition, the reproducing kernel has a number 
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of special properties and we list several of the more 
important. 

(1) If aj" k = 1, 2, ... , M, is an arbitrary, finite 
set of M complex numbers and {lk' gk} are M arbi­
trary points in S X S, then 

M M 

L L a~akX(fk' g;; fk, gk) ;:::: O. (3.32) 
;-1 k-1 

The sum in (3.32) is just 

which is obviously nonnegative. 
(2) From the definition of X we obtain 

X(f, g; f, g) == 1. (3.33) 

(3) The kernel x(f', g'; f, g) is a continuous func­
tion of its variables. It is continuous in {I, g) uni­
formly with respect to If', g'}, and vice versa. This 
is a consequence of the strong continuity of the 
vector-valued function~[f, gj, proved in Theorem 2.2, 
Corollary 2. 

(4) As a consequence of the definition (3.29) and 
the CCR, X satisfies the relation 

X(f', g'; f, g) 

= eiU.o'-O)X(f' - I; g' - g; 0, 0). (3.34) 

Continuous Representations and Aronszajn Spaces 

The reproducing kernel is important because it 
very possibly completely determines the corre­
sponding continuous representation. A general theory 
of Hilbert spaces of functions which possess a repro­
ducing kernel has been developed by Aronszajn,39 
and this theory can be applied to our spaces (i£ of 
functionals on S X S. 

Let us assume that we are given a function 
X(f', g'; f, g)(f, g, f', g' E S) which satisfies Eq. (3.31) 
and Conditions 1 to 4. We proceed to show how 
far we can go in reconstructing (i£ from X. Aronszajn 
has shown that starting with a function X that 
satisfies only Condition 1 [Eq. (3.32)], it is possible to 
construct a Hilbert space of functions on £ = S X S 
for which X is the reproducing kernel. We denote this 
space by ~. This construction, which is independent 
of the nature of the topological space on which the 
functions are defined, has been outlined in Sec. IV 5, 
and is not repeated here. Aronszajn's construction, 
starting with a kernel function X which is known 
only to the extent of satisfying Condition 1, does 
yield a Hilbert space of functions, but specific proper-

19 N. Aronszajn, Proc. Cambridge Phil. Soc. 39, 133 
(1943); Trans. Am. Math. Soc. 68, 337 (1950). 

ties of the functions comprising this space as well 
as a more explicit form for its inner product cannot 
be determined unless further properties of the kernel 
function are known. 

In our case, the fact that X satisfies Conditions 2 
and 3 implies that all the functions of (i£ are con­
tinuous and bounded. Because X satisfies Condition 4 
in addition, we can very readily construct a repre­
sentation of the CCR in ~, for which the operators 
V[g] and W[f] are defined by 

(V[g]If)(f', g') = If(f', g' - g), (3.35) 

(W[fllf)(f', g') = ei 
(f.o') If(f' - I, g'). (3.36) 

Furthermore, if we set /Po(f, g) = x(f, g; 0, 0) then 
we have 

X(f',g';f,g) 

= (U[f', g']({'o(/", g"), U[f, g]({'o(f", g"»a, (3.37) 

where, as usual, U[f, gj == V[gjW[fj, and (, )0 denotes 
the inner product in ~. The irreducibility of this 
representation has not been established. 

The proofs of the foregoing statements are almost 
identical with the proofs of the corresponding state­
ments made about Aronszajn spaces in Sec. IV 5, 
and are not given again here. It can further be 
shown, since X satisfies Eq. (3.31), that the inner 
product in ~ is also given by 

(If, X)a = 1~r:! f 1f*(f(N) , g(N» 

X >..(f (N" g (N)> dp. (f (N), g (N», 

where If(f, g), >"(/, g) E ~. The proof of this fact is 
relatively straightforward, but it will not be given 
here because it depends on the details of Aronszajn's 
construction. 

The final step in reconstructing (i£ from a kernel 
function X, satisfying Eq. (3.31) and Condition 1 
to 4 is to show that the representation of the CCR 
defined in (3.35), (3.36) is irreducible. In analogy 
with the results of Part IV, we conjecture that be­
cause X satisfies Eq. (3.31) the representation 
(3.35), (3.36) is irreducible, but we have not yet 
proved this. 

E. A Space of "Analytic" Functionals 

In order to show the connection between our 
work and that of Bargmann22 and SegaF1 we consider 
the following example of a continuous representation. 
Set~" = L2(R) for each n E~, and for each n E~, 
choose the basis set q, ... N. == hN.(x), N" = 0, 1, ... , 
where hN.(x) is the N"th Hermite function. Let the 
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product reference vector X which determines the 
representation of the CCR be X = II .. E& Q9 'IF ... o, 

and set q,o = X, where q,o is the fiducial vector 
determining the continuous representation of 4>x. 
Furthermore, let r be the countable collection of all 
sequences, N = {N .. : n E .l} , of nonnegative integers 
such that N" ~ 0 for at most a finite number of 
values of n. Then the countable set of vectors 
'lFN = II .. E~ Q9 'IF ... Nn, N E r forms an orthonormal 
basis for 4>x/6 and hence their images 1/IN(f, g) = 

(U[j, glq,o, 'lFN) form an orthonormal basis for the 
continuous representation (£0 of 4>x. The explicit 
expression for 1/IN(f, g) can be easily computed: 

1/IN(f, g) = tu (N~!)t (q .. 0Pnrn} 

X exp [- :E (tq! + iP! - !ipnq,,) 1· (3.38) 
nE~ 

It should be noted that the product in (3.38) is a 
finite product, since N n = 0 for all but a finite 
number of values of n, and the exponential factor 
is the same for each 1/IN(f, g). It is also clear from 
(3.38) that the domain of definition of each 1/IN(f, g) 
can be extended from S X S to L2(Rs) X L2(Ra). 
If we write z" = (1/ V2)(q .. - ip .. ) and 

u[N](z) = II (N,,!rlz~'", 
"Ee. 

then an arbitrary 1/I(f, g) E (£0 has the expansion 

1/I(f, g) = {:E aNu[NI(Z)} 
NEr 

X exp [- :E (!q! + iP! - !ip .. q .. )] , (3.39) 
.. Ee. 

where :ENEr laNI2 < 00. However, the functions 
:ENEr aNU[NI (z) = fez) are precisely the "analytic" 
functions comprising the space which Bargmann 
denotes \5.,.22 Thus each 1/I(f, g) E (£0 is equal to a 
function fez) E \5., multiplied by the common factor 
exp {- :E .. E~ (!q! + !p! - !ip .. q .. )}, and the 
absolute square of this latter function can be identi­
fied with the Gaussian weighting factor used by 
Bargmann and Segal in forming the inner product. 
The relationship (3.39) defines a one-to-one, iso­
metric mapping of (£0 onto \5.,. 

F. Generalizations to Several Fields 

The generalization of the CCR discussed in Sec. 
2E can also be used to construct continuous repre­
sentations. Let X E ~K be a product reference 
vector, let 4>x be the IDPS determined by X, and 
let V[gl and W[fl be the representation of the CCR 
determined by X, where {f, g) E SK X SK. If 
q,o E 4>x, IIq,oll = 1, is the fiducial vector, and 

q,[f, gl == V[glW[flq,o, then the elements of (£K are 
the bounded, continuous functionals 

1/I(f, g) = (q,[f, g], 'IF), (3.40) 

for all 'IF E 4>x. An inner product can be introduced 
into (£K by 

(1/1, }..)c = lim f 1/I*(f(N) , g(N») 
N-" 

(3.41a) 

where 

dp. (f(N) , g(N») = fr II (21) dPkn dqk, .. 
k-l [nl:>N 71' 

(3.41b) 

With respect to this inner product, (£K is a complete 
Hilbert space. The family of unitary operators 

(V[gl1/l)(f', g') = 1/I(f', g' - g), 

(W[fl1/l)(f', g') = ei(f;K')1/I(f' - f, g) 

(3.42a) 

(3.42b) 

form an irreducible set of transformations on (£K 

which fulfill the CCR Eq. (2.48). 

4. KERNEL AND FUNCTIONAL DERIVATIVE 
REPRESENTATIONS FOR OPERATORS; 

INEQUIVALENCE OF CCR REPRESENTATIONS 

A. Kernel Representation of Bounded 
Linear Operators on (£ 

Just as in the case of a finite number of degrees 
of freedom (cf. Sec. IV 6), each bounded linear 
operator on (£ can be represented by a kernel. 
Since (£ is the isometric image of 4>x, each operator 
<Be on (£ is the image of an operator <B on 4>x. Given 
the bounded, linear operator <B on 4>x, define 

<B(f', g'j f, g) = (U[t', g'lq,o, <BU[j, glq,o). (4.1) 

For each fixed If, g) E S X s, <B(t', g'; j, g) E (£. 

Then if 1/1(/, g) = (U[f, glq,o, 'IF) is the image in (£ of 
'IF E 4>x, we can use Eq. (3.22) to show that 

(<B1/I)(f, g) = ~~ f <B(f, g; f~N), g~N») 

= (U[f, g]q,o, <B'IF). (4.2) 

Thus (<B1/I)(f, g) is the image in (£ of the vector 
<B'IF in 4>x, so Eq. (4.2) correctly describes the action 
of <Be in (£. We omit any further discussion of kernel 
functions describing bounded operators on (£, since 
the corresponding discussion given in Part IV for 
the case of a finite number of degrees of freedom 
applies here with few changes. 
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B. Representation of Field Operators by 
Functional Derivatives 

We now discuss functional derivatives and their 
relationship to representation of the field operators 
rp(f) and 7r(g). We assume for the rest of the discus­
sion in Sec. 4B that the fiducial vector <"flo which 
determines ~ is in the domain of all rp(f) and 7r(g) , i.e., 

<"flo E «('\ ~,,(f» (\ «('\ ~ .. (.». (4.3) 
fES .ES 

We indicated in Sec. 2D that in fact such vectors 
<"flo exist. We now define two directional derivatives 
for each 1/I(f, g) E ~. Let e E S, then 

(e, Of) 1/I(f, g) 

and for all 'J1 E ~ .. (e), 

(7r(e)1/I)(f, g) = lim J 7re(f, gj NN), g~N» 
N ... ", 

X 1/I(f~N)' g~N» dp. (f~N)' g~N». (4.11) 

The proof of (4.10) and (4.11) is a fjtraightforward 
adaption of the discussion given in Sec. IV 6 of the 
equivalent equations for a finite number of degrees 
of freedom, and is omitted here. 

An alternative characterization of (4.10) and 
(4.11) may also be won out of (4.6) and (4.7). In 
particular, for 'I' E ~,,(.) we have 

(ep(e) 1/I)(t, g) = [iCe, Of) + (e, g)] 1/I(f, g) (4.12) 

= lim (1/t)[1/I(f + te, g) - 1/I(f, g)], (4.4) and for 'I' E ~ .. (e) we have 
1-+0 

(e, 0.)1/I(f, g) 
= lim (1/t)[1/I(f, g + te) - 1/I(f, g)]. (4.5) 

1 ... 0 

The limits on the right of (4.3) and (4.4) exist for all 
1/1 E ~ if the fiducial vector <"flo defining ~ satisfies 
(4.3). Using the definition of 1/I(f, g), we can write 

(l/t) {1/Iet + te, g) - 1/I(f, g)} 

= (V[O]W[f](l/t)(W[te] - I)<"fIo, '1'). 

In Sec. 2D we showed that iep(e) is the strong limit 
of (l/t)(W[te] - I), and by hypothesis <"flo E ~,,(e). 
Therefore, we can rewrite (4.4) as 

(e, of)1/I(f, g) = -i(U[f, g]ep(e)<"fIo, '1'). (4.6) 

The limit on the right of (4.5) can be evaluated in 
the same fashion, using the fact that <"flo E ~,,(.) =} 

U(f, g]<"fIo en,,(e) for all If, g}, as shown in Sec. 2D. 
The result is 

(e, 0.)1/I(f, g) = i(7r(e)U[f, g]!f>o, '1'). (4.7) 

Equations (4.6) and (4.7) can both be written in a 
slightly different form by commuting rp(e) or 7r(g) 
with U[f, g] with the aid of (2.42) and (2.43). In 
particular, we note the two formulas 

ep.(f, OJ f', g') == (U[f, g]<"fIo, ep(e)U[t', g']<"fIo) 

= [iCe, Of) + (e, o)]x(f, OJ 1',0'), (4.8) 

7re(t, OJ 1', g') == (U[t, g]<"fIo, 7r(e)U(f', g']<"fIo) 

= -iCe, o.)X(t, gj f', g'). (4.9) 

Since U[t, g]<"fIo E ~,,(.) (\ ~ .. (.) for all {f, g}, it 
is not difficult to show that for all 'I' E ~,,(.), 

(ep(e) 1/I)(t, g) = lim J ep.et, g j t~N), gfN» 
N ... ", 

(7r(e)1/I)(t, g) = -iCe, 0.)1/I(f, g). (4.13) 

Thus the kernels for rp(e) and 7r(e), as well as their 
representation on any vector in their domain can be 
determined by functional differentiation. It should 
be noted that Eqs. (4.12) and (4.13) have the same 
functional form independent of ~. 

C. Some Criteria for the Unitary Equivalence and 
Inequivalence of Irreducible Representations 

of the CCR 

As a final application of continuous-representation 
theory, we employ it as a tool in a discussion of the 
unitary equivalence and inequivalence of our repre­
sentations. 

We have already seen that all the product reference 
vectors in m can be grouped into equivalence classes, 
(Definition 2.2) and that the representations deter­
mined by two equivalent vectors are identical. It is 
useful to introduce another equivalence relation 
into S) (and hence into m) as follows. l6 

Definition 4.1. Two Co vectors are said to be 
weakly equivalent, IInE.1 Q9 Xn ~ IInE.1 Q9 An, if 
and only if there is a set of real numbers {On; n E ~} 
so that IInE.1 Q9 Xn ~ IInE.1 Q9 eiBAA". 

A necessary and sufficient condition for weak equiva­
lence is that L"E.1 II (x", An) I - 11 < ro. A weak 
equivalence class is the union of a collection of 
complete equivalence classes. 

We now show that two representations determined 
by weakly equivalent product reference vectors are 
unitarily equivalent. Let X = IInE.1 Q9 Xn, A = 
IInE.1 Q9 An, and assume X, A E m and X ~w A. 
Then there exists a set of real numbers {On: n E ~} 
such that if A' = IInE.1 Q9 eioAAn, then X ~ A'. It is 
easy to see that A' E ill, and therefore, the repre-
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sentations determined by X and A' are identical. 
Thus we need only demonstrate that the representa­
tions determined by A and A' are unitarily equiva­
lent. However, von Neumann has shown that there 
exists a unitary map, T(O), of .\)A onto .\)A' which 
maps each product vectorct> = TI .. EA @ frO .. E .\)A onto 
T(O)ip = TI .. E.1 @ eio

"frOn.
16 If VA[O] and WArt], and 

Vdoj and WA,[f] are the representations determined 
by A and A' respectively, then with the aid of the 
defining equations (2.11), it is easy to see that 

VA,[oj = T(O)VA[gjT(O)-t, 

WA,[fl = T(O)WA[flT(O)-l. 

Unitary Invariant Tags 

Although we have not yet been able to determine 
all those among our representations which are 
unitarily equivalent, we now discuss a technique 
which is frequently useful in showing the unitary 
inequivalence of two representations of the CCR. 

Note added in proof: In collaboration with E. J. 
Woods, we have succeeded in proving, with the aid 
of the tag philosophy, that any two representations 
of this CCR defined in the canonical fashion of this 
paper on two IDPS's with weakly inequivalent 
fiducial vectors are unitarily inequivalent repre­
sentations. A report on this work is in preparation. 

Let a representation determined by X E m be given 
and form the family of unitary operators U[f, gj = 
V[gjW[fj. Then using the commutation relations, we 
can write 

U[fk, gkjU[f, oj 

= ei[(fM)-< ... fl) U[f, ojU[fk, Ok]. (4.14) 

Now suppose it is possible to pick a sequence 
{fk, gk} E S X S, k = 1, 2, ... , which satisfies the 
two conditions: 

(1) lim (fk, 0) = lim (gk, f) = 0, 
k-+CIO k-+Q) 

for all f,oES, 

(2) lim ('IF, U[fk, gk]ip) = ('IF, A ip), 
k_a> 

for all 'IF, ct> E .\)X, 

where A is a bounded, linear operator on .\)X. Then 
taking the limit of both sides of (4.14), we see that 

AU[f, gj = U[f, ojA. (4.15) 

Since (4.15) holds for all {f, g} E S X S, and U[f, gj 
is an irreducible set of operators, we can conclude 
from Schur's theorem'o that A = aI, where a is a 

40 M. A. Naimark, Normed Rings (P. Noordhoff Ltd., 
Groningen, The Netherlands, 1959), p. 255. 

complex number depending on the sequence {fk, Ok} 
and I is the unit operator. It is clear for the repre­
sentation U'[f, oj == VU[f, ojV-\ which is unitarily 
equivalent to U[f, gj, that the weak limit of U'[fk, Okj 
is VaIV- 1 = aI. In other words, a is a unitary in­
variant of the representation of the CCR. 

We can now draw the following conclusion: Let 
U(1)[f, oj and U(2)[f, gj be determined by X(1) E m 
and X(2) E m respectively. Let {fk, gd E S X S, 
k = 1,2, ... be any sequence satisfying condition 1 
above, and suppose further that A (1) = a (1) I is 
the weak limit of U(1)[fk, Okj. Then either if the 
weak limit of U(2)[fk, gkj does not exist, or if it does 
exist and A (2) = a(2) I where a(1) ~ a(2), then the 
two representations must be inequivalent. 

As an elementary application of this procedure, 
consider the special case where XCi) = TInEA @ 
X~i) E m, i = 1, 2, have the property that there 
exist unit vectors x~i) E L 2 (R), such that 

lim IIx!;) - x~i) II = 0, i = 1,2. 
Inl_co 

Let us adopt fk = ph" .. gk = qh" .. k = 1, 2, , 
where p and q are arbitrary real numbers, nk, k = 
1, 2, ... is any subsequence of A such that 
limk_a> Inkl = ro, and h", n E A are the usual Hermite 
function basis elements of S. It is obvious that the 
sequence 11k, gk} satisfies condition 1 above, and it is 
a straightforward matter to show that U<O[fk, gd 
converges weakly and that a(O (p, q) = (x~i), 
Vo[qjWo[pjx~i», i = 1, 2. Thus in order that the 
two respresentations be unitarily equivalent, it is 
necessary that a(l)(p, q) = a(2)(p, q) for all p, q. 
With the aid of Eq. (2.9) we can write this last 
equality as i: x~l)(y)*ei"(~-·)x~)(y - q) dy 

= i: x~2)(y)*ei"(·-·)x~2'(y - q) dy. (4.16) 

In Sec. IV 3 we showed that both sides of (4.16) 
possess Fourier transforms, which yields the equality 

x~l)(y)*x~l)(y - q) = X~2)(Y)*X~2)(y - q). 

This equality can hold for almost all y and q if and 
only if X~l) (y) = e i8 X~2) (y) for some real O. Therefore 
we can conclude that if x~l) ~ ei8x~2) for any real 0, 
then the representations of the CCR determined by 
X (1) and X (2) are unitarily inequivalent. 

In particular, consider the very special class of 
product reference vectors of the form X = TInEA @ 
X .. , X .. == X"" n E A. In this case we can speak of the 
representation of the CCR determined by X." and 
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we have just shown that as long as x ... and x:' are 
not colinear (x ... ~ e"x:') then the representations 
they determine are unitarily inequivalent. Clearly, 
there are an uncountable infinity of unit vectors 
x ... E L2, no two of which are colinear, from which 
product reference vectors can be formed. Thus the 
product reference vectors in this restricted class 
alone determine an uncountable infinity of in­
equivalent, irreducible representations of the CCR. 

lt is clear that all the unitary invariant "tags" 
discussed here can be obtained within the continuous 
representation (£ by taking appropriate limits of the 
reproducing kernel. If I", gk are two weakly con­
vergent test function sequences, then it may be 
shown that condition 2 above for the existence of A 

JOURNAL OF MATHEMATICAL PHYSICS 

is satisfied if and only if 

lim x(f, gj Il' gk) 
k ...... 

exists for all {I, g I E S X S. lt then follows that the 
unitary invariant 

a = lim (<1>0' UrJk, gd<l>o) = lim XeO, 0; h. Uk)' 
~~ ~~ 
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The structure of a Euclidean space can be approached, with an unlimited accuracy, by a part of a 
maximally ordered finite linear space. Accordingly, all the physical theories based on the space-time 
continuum can also be considered in such a finite space-time. The finiteness of the underlying space 
makes also some new kinds of theories possible. Among them is a purely group theoretical formalism 
of relativistic quantum theory, including a free-particle theory as well as a group formalism of inter­
action of particles. The free-particle formalism of a finite space-time is considered here (Part I). 
An essential difference in comparison with the formalism of continuous space-time is that there is, 
as a consequence of the relations of Euclidicity to be imposed on observable 4-vectors, a nontrivial 
spectrum of momentum, mass, and energy in a finite geometry. 

I. INTRODUCTORY REMARKS 

T HERE are reasons 1 to believe that distances 
larger than about 4 X 1027 cm from the earth 

are inobservable in principle. One can refer, for 
instance, to the fact that the red shift in the spectra 
of the galaxies at that distance already equals the 
Doppler effect of the velocity of light. On the other 
hand, one has considered in atomic physics the 
possibility of the existence of an elementary length 
d, the smallest observable length. Different orders of 
magnitude of d have been suggested, all of them 
obeying d :::; 10-18 cm. If a smallest observable length 
exists, the observable points of space (and time) 
form a finite set. 

Irrespective of the fact whether there are any 
1 For instance, G. Jarnefelt, Ann. Acad. Sci. Fennicae Ser. 

A I, No. 96 (1951). 

largest or smallest observable lengths, one can con­
sider the problem whether the physical space-time 
can be mathematically described by a finite space. 
The solution of the problem depends on the solution 
of another problem, viz. the following: Is it possible 
to approach the structure of a Euclidean space, 
with an unlimited accuracy, by a finite space? The 
answer to the latter question is in the affirmative' 
even though the results in question are little known 
outside the circle of the mathematicians studying 
finite geometries. These results are reported in 
Sec. II below. 

The significance of the results concerning the 
approximation of a Euclidean geometry by a finite 
geometry is in the fact that it makes of finite geom-

2 P. Kustaanheimo, Soc. Sci. Fennica 15, No. 19 (1950). 
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etry a "realistic model" in physics. All the existing 
physical theory can be now approximated, with 
an unlimited accuracy, by theory in a finite space. 
More interesting than just a reformulation of old 
theories is, of course, to study whether the use of 
finite space can open new possibilities for physical 
theory. 

A purely group theoretical formalism of rela­
tivistic quantum theory, possible in a finite space­
time, will be studied in this and two subsequent 
papers (to be called Part I, Part II, and Part III, 
respectively). "Purely group theoretical" means that 
also the interactions of particles are described in this 
formalism by means of an invariance and transforma­
tion theory, based on geometry and covariance only. 
A well-known earlier formalism of this type is the 
formalism of general relativity where the gravita­
tional interactions are described by equations based 
on geometry and covariance only. As in general 
relativity, the laws of interaction (there the equa­
tions for the gravitational field, here the S operators 
predicting the interactions and composed of the 
creation and the annihilation operators of the parti­
cles in question) are constructed by means of ten­
sorial contractions. The covariance of the laws of 
interaction with respect to the relativity group is, 
together with the geometry of space-time, the only 
assumption used for the construction of the S 
matrices in this formalism (see Part II for details 
of construction). 

Such a formalism mayor may not have use in 
physical theory. Here the formalism is investigated 
as a mathematical model, as a logical possibility 
connected with a finite space-time. The existence of 
this formalism was predicted in an earlier paper.s 

The group formalism of interaction will be con­
sidered in Part II. An essential point of the inter­
action formalism is based, however, on the existence 
of nontrivial spectrum of observable momentum, 
mass, and energy in finite geometry; the existence of 
this spectrum is obtained as a result of the con­
sideration of the free-particle formalism of finite 
space-time which is given in the present paper 
(Part I). 

II. THE FINE STRUCTURE OF SPACE-TIME 

Irrespective of the fact whether any largest or 
smallest observable lengths exist, one can approxi­
mate the observable points of space-time, with an 
unlimited accuracy, by the points of a cubic lattice E 
contained in a four-dimensional Euclidean space R4. 

8 Y. Ahmavaara, Ann. Acad. Sci. Fennicae Ser. A VI Nos. 
85, 95, and 106 (1961)-(1962). 

The side length of an elementary cube must at least 
be smaller than 10-13 cm in the spatial dimensions, 
and smaller than (10-13 cm)/c = 10-24 sec in the 
dimension of time, but it can of course be made also 
much smaller than these upper limits. The total 
number of successive points in both spatial and 
time dimensions must thus exceed 8 1027/10-13 

= 1041 

at least. The finite lattice so characterized may be 
called the Euclidean lattice of the observable points. 

The finiteness of E arises the question whether a 
finite four-dimensional linear space EG(q, 4) over a 
finite Galois field GF(q) exists, such that EG(q, 4) 
contains a subset isomorphic with the lattice E. 
Obviously, the problem is equivalent to the problem 
whether a number (> 1041

) of successive integers 
of GF(q) can be transitively ordered, and thus put 
into an isomorphic correspondence with a sequence 
of equal-distanced real numbers. 

Consider a Galois field GF(q). It contains q ele­
ments (q is a prime), viz. the q rest classes of the 
ordinary integers modulo q. Let us denote these rest 
classes by 0., 1., 2., ... , (q - 1)., where a. = 
{n; n = a (mod q); n = integer}. There are always 
in a field GF(q) primitive elements p for which the 
integer v = q - 1 is the lowest exponent for which 
p' = 1. holds true. Every nonzero element a. of 
GF(q) is either an even or an odd potence of a given 

. " 1 t 2h 2h+ 1 'th prumtlVe e emen : a. = p or a. = p ,WI an 
integer h. The even potences will be called "squares", 
the odd potences "not-squares." There are exactly 
(q - 1)/2 squares and (q - 1)/2 not-squares in a 
field GF(q). Since the product of two squares, and 
of two not-squares is always a square, and the 
product of a square and a not-square is always a not­
square, one can consider the squares as the positive 
numbers, and the not-squares as the negative num­
bers of the field GF(q): a. > O. if a. = /\ and 
a. < O. if a. = p2h+l. The relation p.-l = 1. guar­
antees the positiveness of the unit element. 

The relations "greater than" and "smaller than" 
can be defined for any two elements a. E: GF(q) 
and b. E: GF(q), a. ;;e b., by 

a. > b. if a. - b. > 0., 

a. < b. if a. - b. < 0., 
(2) 

provided that the condition -1. < O. holds true. 
In terms of a symbol of Legendre this condition 
reads: 

(3) 

It guarantees that the cases a. > b. and a. < b. 
exclude one another. 
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The sum of two squares is obviously not neces­
sarily a square and, accordingly, the relation of 
order defined by (2) is not transitive in general. 
Therefore the elements of GF(q) do not in general 
form ordered sequences of more than two elements. 
The sequence 0« < 1« < 2«, for instance, is transi­
tively ordered only if, in addition to the trivial 
relations 2« - 1« = 1« - o. = 1. > O. (which are 
always true), also the condition 2. - 0« = 2. > O. 
holds true. Obviously, any sequence a. < (a + 1). < 
(a + 2). < '" < (a + qk+l - 1). of qk+l successive 
integers of GF(q) is transitively ordered by (2) if, 
and only if all the nontrivial relations 2« > 0., 
3. > 0«, ... , (qk+l - 1)« > O. hold true simulta­
neously. This implies that all the elements (qi). of 
GF(q), corresponding to the first k primes qi, are 
squares. Using the symbol of Legendre this condition 
can be written as 

q. = 2,3,5,7, ... , qk 

(successive primes). (4) 

It was shown by Kustaanheimo2 that the condi­
tions (3) and (4) are simultaneously satisfied if one 
chooses the fundamental prime q of the field GF(q) 
to be of the general form 

q = 8qlq2' . 'qk - 1 (the q. the k first primes). (5) 

The existence of an infinite set of solutions q of (5) 
is guaranteed by the theorem of Dirichlet (cf. Kus­
taanheimo, Ref. 2). If the element (qk+l). is not­
square, then the greatest possible length of "Euclidean 
chains,,4 of GF(q) satisfying (5) is exactly qk+l 
elements. For instance, q = 47 satisfies the condition 
(5), there being qk = 3, qk+l = 5, and 547 < 047 , 

Accordingly, any sequence of five successive integers 
of GF(47) is transitively ordered, and no sequence of 
six successive integers can be ordered in this field. 

A four-dimensional linear space EG(q, 4) over 
GF(q), where q is of the form (5), and where qk+l is of 
the magnitude of 1041 at least, thus contains a subset 
isomorphic with the lattice E. The fine structure of 
space-time is thus expressed by a space EG(q, 4) :J E. 

m. THE RELATMTY GROUP OF A FINITE 
SPACE-TIME 

Let us now consider a linear model W of space­
time, that is, a four-dimensional linear space W over 
a field K of numbers, such that the Euclidean lattice 
E is contained in W. It is evident from the Sec. II 

4 This term for the transitively ordered sequences of 
GF(q) was introduced by F. Levi, Zentr. Math. 39, 156 
(1951) [A review of Ref. 2]. 

that one can choose for K either the field R of the real 
numbers, or a Galois field GF(q) satisfying the 
condition of Kustaanheimo [Eq. (5)], or So field of 
rational numbers, for instance. Let us introduce the 
following notations: 

A: a 4 X 4 matrix with elements in K, 
x : a point of W indicated by a column vector 

containing the time coordinate Xo and the 
spatial coordinates Xl, X2, and Xa. 

a : another 4-vector of W, 

A, f, etc.: the transposes of A, x, etc., (6) 

g = 

-1 0 0 0 

o 100 

o 0 1 0 

000 1 

the metric matrix of W, 
with elements 0, 1, and -1 
in the field K, 

X·y = fgy = XlYl + X2Y2 + xaYa - xoYo; x, Y E: W, 

X2 = X· X, x E: W. 

The transformations (A, a) of W onto itself, de­
fined by 

(A, a) : x ~ Ax + a, (7) 

form a group where the unit is 1 = (I, 0), I = the 
4 X 4 unit matrix. The group multiplication and 
the inverse are given, respectively, by 

(Al' a) '(A2, b) = (AIA2' Alb + a), 

(A, a)-l = (r1, -rla). 
(8) 

In particular, we are interested in the translation 
group ~, the Lorentz group £, the Coish group e, 
the Poincare group (or the inhomogeneous Lorentz 
group) <P, and the Dieudonne group ~ defined by 

~ = {(I, a); a E: WI. 

£ = {(A, 0); AgA = g}, 

e = {(A, 0); AgA = ±g}, (9) 

<P = {(A, a); AgA = g, a E: WI. 

~ = {(A, a); AgA = ±g, a E: WI. 
By neglecting the elements containing P or T, 

the inversions of space or time, one obtains the 
corresponding restricted groups £0, eo, <Po, and ~o. 
The relations between the full and the restricted 
groups are indicated by semidirect products: 

£ = £0 X !J, 

<P = <Po X !J, 

e=eoX!J, 

~=~oX!J. 

(10) 

Here !J is the inversion group composed of the ele­
ments 1, P, T, and PT. 
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For K = R (the field of the real numbers) one has, 
of course, .c = e, and CP = !D. For K = GF(q) it 
follows from a theorem of Dieudonne6 that .c r6- e, 
and CP r6- !D. The A matrices obeying AgA = -g 
can all be generated by the Lorentz matrices together 
with a particular class of the non-Lorentz matrices, 
for instance, with the following class given by 
Coish6

: 

00 00 00 -1. 

Ao = O. -a. f3. O. a! + f3! = -1 •. (11) , 
O. f3. a. O. 

1. O. O. O. 

Since the (Ao, 0) transform x2 
--? _x2 they may be 

called reflections in the light cone. Since the light cone 
itself is invariant in these reflections, it seems conse­
quent to count the elements (Ao, 0) to the relativity 
group of the linear space-time W over GF(q), this 
group being thus defined by the Dieudonne group !D 
rather than by the Poincare group. 

IV. THE UNITARY REPRESENTATIONS OF 
THE DffiUDONNE GROUP 

To consider the consequences of the fine structure 
of space-time in relativistic quantum theory one 
must first construct the unitary representations 
of the Dieudonne group !D over GF(q) in a linear 
space over the ordinary complex numbers. The 
general method of Wigner and Mackey7 can be 
applied. 

By (8) one has 

U(A, a) = U[(/, a) ·(A, 0)] = U(/, a)U(A, 0). (12) 

Since :J is a commutative finite group one has by 
well-known theorems 

U(/, a) rooJ EB U.,(a), ., 
(13) 

p t:. EG(q, 4). 

Introducing the little groups e(p) and their left 
cosets K.,,(p) by . 

e(p) = {(A, 0); Ap = p), 

K",(P) = {(A, 0); Ap = p'), 
(14) 

one obtains from the elements (A, 0) of the Coish 
group e in a unique way elements (A(p), 0) of the 
little Coish group e(p) by the construction 

• Dieudonne, Mem. Amer. Math. Soc. No.2, p. 51 (1949). 
8 Coish Phys. Rev. 114,383 (1959). 
7 E. Wigner, Ann. Math. 40, 149 (1939); G. Mackey, 

Acta Math. 99, 265 (1958); for a similar application see 
H. Joos, J. Math. Phys. 5, 155 (1964). 

(A(P),O) = (A.,(Ap'), O)·(A, 0)·(A.,,(p), 0). (15) 

Here (A.,(Ap'), 0) and (A,,'(p), 0) are freely chosen 
but once for all fixed elements of the respective 
cosets K,,(Ap') and K",(p). Solving (15) for (A, 0), 
using the evident rule (A,,'(p), 0)-1 = (A,,(p'), 0), 
and exchanging the indices p and p' for convenience, 
one has the following composition of the unitary 
representation U(A, 0): 

U(A,O) = U(AA.(P') , O)U(A(P') , O)U(A",(P), 0). (16) 

Consider a linear space H over the ordinary 
complex numbers, 

p t:. EG(q, 4), (17) 

spanned by a basis system 

{1>", .. ;P E:: EG(q, 4); u = 1,2, '" ,q(P»), 

so that 1>",0' E:: H". One can always choose this system 
so that one has 

U(l, a)1>",v = U"(a)1>,,,v, 

U(A.,,(P), 0)1>",0' = 1>", ,v, (18) 

U(A(P) , 0)1>.,,0' = E !Dv.(A(P), 0)1>", •. 
p 

Here (A(p), 0) --7 !D(A(p), 0) is an ordinary complex­
number matrix representation of the little group 
e(p). Combining (12), (13), (16), and (18) one has 
the standard form of the operator U(A, a) defined by 

U(A, a)1>p,v = eC2ri/.lA"'a E !D .. iA(Ap) , 0)1>/,,,, •. (19) 
• 

In a Galois field GF(q) satisfying the condition 
(5) of Kustaanheimo, the element -1. is not-square 
and, accordingly, for every element M > O. one 
has - M < 0.. Let us now decompose the general 
space (17) as follows: 

H = Ho EB H(M) , H(M) = EBH." 
M " (20) 

p2 = ±M, M 2': 0., P r6- O. 

From U(A, a)1>",v t:. HAp and from Ap· Ap = ±p2 
one concludes that each of the spaces H(M) carries 
a separate representation of the Dieudonne group !D. 
Of course, the same holds for the space H 0 cor­
responding to the case p = O. 

From (14) it follows that e(O) = e so that Ho 
carries a representation of the Coish group e. This 
space is now less interesting in comparison with the 
spaces H(M). Each subspace H" of H(M) evidently 
carries a representation (A(p), 0) --7 !D(A(p), 0) of 
the little group e(p). An element (A,,(p'), 0) of the 
coset K,,(p') conducts, by 
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(A(P) , 0) -? (Ar,(p') , or1 
• (A(P) , 0)· (A,,(P') , 0) E: e(p') , 

an isomorphism from e(p) to e(p') for every pair 
(p, p') such that p,2 = ±p2 (notice that in t~e case 
pl2 = _p2 this result has no counterpart m the 
theory of continuous Lorentz group). This implies 
that all the representations of the little groups e(p) 
in the respective spaces HI> are equivalent with one 
another and, accordingly, the little groups them­
selves are isomorphic to one another. One can thus 
introduce an abstract little group e(M), depending 
only on the constant M, and isomorphic to all the 
little groups e(p) with p2 = ±M. 

If an index S is introduced to label the irreducible 
unitary representations of the abstract little group 
e(M), one obtains the decomposition 

:0 (A(P) , 0) ,..., EB:DCSl(A(p), 0) (21) 
8 

of the :0 matrices of Eq. (19), and the corresponding 
decomposition 

H(M) = EBH(M, S) (22) 
S 

of the spaces H (M). 
Each of the spaces H(M, S) now obviously carries 

an irreducible unitary representation of the Dieu­
donne group :D. In particular, this applies to the 
spaces H(O., S) under the condition that the vectors 
4>",., corresponding to p = 0 are not included in 
H(O., S) (but in Ho). 

If one decomposes an irreducible manifold 
H(M, S), for M > 0., of the Dieudonne group so 
that 

H(M, S) = H(+M, S) EBH(-M, S), (23) 

where H ( + M, S) is spanned by those vectors 
4>",., E:H(M, S) forwhich p2 = +M, andH(-M, S) 
by those 4>",., E: H(M, S) for which p2 = -M, then 
each of the spaces H(+M, S) and H(-M, S) car­
ries an irreducible unitary representation of the 
Poincare group (the inhomogeneous Lorentz group) 
<P. In particular, the inversions P and T are repre­
sented by the unitary operators 

U(P)4>l1,., = 4>P •.• , U(T)4>-p,a = 4>T.... (24) 

Here Pp is the space-inverted vector p, and Tp the 
time-inverted p. In a reflection in the light cone, 
(11), the two spaces H( +M, S) and H( -M, S) are 
exchanged with one another. 

An open problem so far is the construction of the 
ordinary complex-number matrices :D(A(p), 0). Evi­
dently, this task presupposes the construction of the 
irreducible representations of the finite Coish group 
e in terms of ordinary complex-number matrices. 

The present situation in this problem is the following. 
The non-Lorentz Coish transformations (Ao, 0) of 
(11) are outer automorphisms of the Lorentz group 
.c. The representations of the whole Coish gro~p e 
could be therefore determined if just the ordmary 
complex-number matrix representations of the finite 
Lorentz group £ were known. The latter group 
belongs to a class of "orthogonal groups" investi­
gated indeed since the work of Dickson,s out the 
interest has been so far restricted to modular repre­
sentations only. Fortunately, the situation will 
perhaps change soon.9 

• 

So far only some properties of the :D matrIces are 
known. There is a result of Coish6 which can be 
formulated as follows. 

Theorem: The irreducible modular representa­
tions of the restricted Coish group eo over GF(q) are 
multivalued, every element (A, 0) of eo be~g repre­
sented by several matrices in the followmg way: 

(A,O) -? wQkM(A, 0); 

k = 0, 1,2, ... ,q; w E: GF(q); (25) 

w·+ 1 = 1.; (A,O) -? M(A, 0) is a function; 

The integer Q determining the multivaluednesa is 
different for different nonequivalent representations, 
and it has the values Q = 0, ±1, ±2, .. , . 

The theorem implies that one can define a "cover­
ing group" e~ of eo in order to make the representa-­
tions (25) univalued, and that it is the covering 
Coish group e' rather than e which is relevant in 
quantum theory. The unitary irreducible representa­
tions of the extended little groups e' (p) in terms of 
ordinary complex-number matrices will obviously 
be of the form 

(A(P), 0) -? ehiQk/(o+ll:D (Sl(A(P), 0); 

k = 0,1,2, ... , q. (26) 

Here the matrices :ocSl(A(p, 0» give a univalued 
irreducible unitary representation of the little Coish 
group e(p) forevery value of S. 

When the right member of (26), with the obvious 
change p -? Ap, is substituted for the :0 matrix 
appearing in (19), the unitary operator U(A, a) de­
fined by (19) gives an irreducible unitary representa­
tion of the covering Dieudonne group :0'. Such a 
representation is characterized by the three labels 
M, S, and Q. 

It is shown in the next section that the label M 
is connected with the notion of rest mass. On the 

8 L. Dickson Linear Groups (Dover Publications, Inc., 
New York, 1958) (first printing in 1901). 

g A private commurucation from Professor R. Brauer. 
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other hand, since the abstract little groups e(M) 
are rotation groups, one must expect the label S to 
be connected with the notion of spin. What is then 
the physical interpretation of the label Q? 

To consider this question, consider the Q trans­
formations of the Hilbert space which are given by 

q,,,.g.Q--?e2rHJk/(q+l)q,,,.g.<l, k = 0,1,2, .,. ,q. (27) 

Since these are finite analogies to the continuous 
gauge transformations the label Q could be interpre­
ted to represent a charge quantum number like, 
for instance, the electric charge number (this is the 
interpretation of Coish6

). 

V. THE SPECTRAL FUNCTIONS OF REST 
MASS, ENERGY, AND MOMENTUM 

Following the conventional physical interpretation 
of the formalism of relativistic quantum theory one 
must consider an irreducible manifold H(M, S, Q) 
of the covering Dieudonne group ~' as the Hilbert 
space composed of the single-particle states of the 
particle of the species A = (M, S, Q). 

The label M has the range of values composed of 
the !(q + 1) nonnegative elements of a Galois field 
GF(q). Such an element is either zero or a square 
and, accordingly, can always be written as 

p~ + p~ + P: is either zero or a square of GF(q). To 
every state q,,,,., E: H I ( -M, S, Q) one can thus 
associate a scalar momentum K defined by 

K E: GF(q). (31) 

Let the particular field GF(q) now under considera­
tion be so chosen that the condition (5) of Kustaan­
heimo is satisfied. There are then Euclidean chains 
in GF(q), that is, there are sequences 

a. < (a + 1). < .,. < (a + qk+l - 1). 

of qk+l successive integers of GF(q) which can be 
mapped isomorphically to the qk+l ordinary integers 
a < a + 1 < ... < a + qk+l - 1. Of course, the 
"physical domain" of each of the variables PI, P2, Pa, 
Po, K, and jJ. must be represented by the respective 
Euclidean chains E I , E 2 , Ea, Eo, E., and E .. of GF(q). 

From the nonnegativeness of the phYSIcal domains 
of Po, K, and p., and from the symmetry of the physical 
domains of PI, P2, and Pa with respect to the origin 
(of the observers reference frame) it follows that 
the Euclidean chains representing the physical 
domains must be chosen as follows: 

Ei = {PiiPi = (ki)., k; = 0, ±1, ... ,±!(qk+l - I)}, 

Eo = {PoiPo = (ko)., ko = 0,1,2, ... ,qk+l - 11, (32) 

M=l, p. E: GF(q). (28) E< = {K;K = k., k = 0, 1,2, ... ,qk+l - I}, 

A vector q,,,,g E: H(M, S, Q) must be considered 
as a state of an exact 4-momentum P (and of the 
variable 0-) of the particle (M, S, Q). In particular, 
the component Po of P must be considered as repre­
senting the energy of the particle (M, S, Q) in the 
state q,,, ,g' The components PI, P2, and Pa together 
form the 3-vector momentum of this particle in 
this state. When doing these interpretations one 
must, however, remind that one is giving the names 
of "energy" and "momentum" to Galois numbers: 
all the components of P are now elements of GF(q). 

In particular, it follows from (28) that the rest 
mass of the particle (M, S, Q) can be defined as the 
Galois number p. but only for the states q,,,,., E: 
H( -M, S, Q) [cf. (23)]: only these states have the 
correct relation 

p2 = p~ + p~ + P: _ p~ = _ p.2 • (29) 

Let us now decompose the space H( -M, S, Q) 
so that 

H( -M, S, Q) = H I ( -M, S, Q) (JJ H 2 ( -M, S, Q), 
(30) 

where H I ( -M, S, Q) is the space spanned by those 
vectors q,,,,., E:: H ( - M, S, Q) for which the element 

Ep= {p.;p. = m., m = 0,1,2, ... ,qk+l - I}. 

The states q,,,,g E:: H I ( -M, S, Q), for which each 
of the variables PI, P2, Pa, Po, K, and p. belongs to the 
respective physical domain, may be called the 
observable states of momentum. 

The relations (29) and (31) are valid for any states 
q,,,,v E: H I ( -M, S, Q). In particular, when applied 
to the observable states of momentum, they give 
the fundamental conditions 

m2 = k~ - e, k2 = k~ + k~ + k:. (33) 

For every solution (kl' k2' ka, ko, k, m) of (33) by the 
integers allowed by (32) there is an observable 4-
momentum p. 

If the results of measurement are indicated by 
using a natural unit of measurement, viz. the smallest 
difference E of energy, then the observable values 
of the variables PI, P2, Pa, Po, K, and p. corresponding 
to a given solution (kl' k2' ka, ko, k, m) of (33) are 
given by 

(34) 
(PO)ob8 = koE, Kob. = kE, f.£ob. = mE. 

The conditions (33) determine the distribution of 
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the observable states of momentum. This distribu­
tion can be expressed by the spectral function F 
from El X Ez X Es X Eo X E. X E ~ to the numbers 
1 and 0, defined to have the value 1 for every solution 
(kl' kz, ks, ko, k, m) of (33) by the numbers (32), and 
otherwise the value O. The spectral functions F m 

and L of energy and rest mass, respectively, are 
then given by 

(35) 

The number F .. (ko) gives the number of observable 
4-momenta for the fixed values mE and koE of the 
observable rest mass and energy. The number ~(m) 
gives the total number of observable 4-momenta for 
the fixed value mE of observed rest mass. The exist­
ence such nontrivial spectral functions of geometrical 
origin is obviously a fundamental consequence of 
the fine structure of space-time. 

Examples: For m = 0 one has F o(ko) > 0 for 
every value ko = 1, 2, 3, ... , qk+l - 1. Since the 
number qk+l is larger than 104

\ the value of ~(O) 
is very large, indicating the existence of particle(s) 
having the rest mass zero. Evidently, the peak of the 
~ function at m = 0 is of the maximal possible 
magnitude. The energy spectrum of the particle 
m = 0 begins with the values Fo(l) = Fo(2) = 

Fo(3) = Fo(4) = 6, Fo(5) = 30. The mass spectrum 
~(m) has, in the immediate vicinity of m = 0, the 
following course: ~(I) = ~(2) = 1, ~(3) = 2:(4) = 7, 
~(5) = 31. The values of 2:(m) for m ~ 0 are thus 
in this domain vanishing in comparison with the 
value 2:(0) ~ 104

\ which shows that there is practi­
cally no observable rest mass in the nearest vicinity 
of m = o. 

Taking into account the smallness of the mass unit 
here employed, it is the behavior of the function 
~ for very large m which is interesting in the connec­
tion with the problem of the mass spectrum of 
elementary particles. About this problem a pre­
liminary remark can be made here. 

Since (33) can be rewritten as (ko+k)(ko-k) =mz, 
e = k~ + k~ + k~, there is a solution (ko, k) for each 
integer divisor of m. Indeed, if m2 = ab, where a and b 
are positive integers such that a 2': b, then there is 
one and only one solution (ko, k) of (33) for each pair 
(a, b), viz., that one given by ko = !(a + b), k = 
!(a - b). Accordingly, the number of the dif­
ferent observable energies of a particle having the 
rest mass mE is given by the number of the major 
divisors of m. Thus the problem of the mass spectrum 
is closely connected with the well-known number­
theoretical problem concerning the distribution d(m) 
of the divisibility of integer m. One can easily see 
that the functions d(m) and 2:(m) have, for large 
values of m, discrete peaks having irregular mutual 
intervals. 
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A procedure is described for obtaining a complete, invariant classification of the local, analytic 
~eometries and matter fields in general relativity by a finite number of algebraic steps. The approach 
IS based on an 'extension of the classification scheme to include differential invariants of all orders and 
to provide maximally determined standard frames of vectors at each point. It is further shown that 
the resultant invariant functions can be replaced, in a finite number of algebraic steps, by special 
invariant functions which, while still uniquely representative of the geometry, can be assigned 
arbitrarily to produce all possible local, analytic solutions to the Einstein equations, in this repre­
sentation. It is suggested that this type and special function scheme, obtainable from ideal geo­
metric measurements in a finite number of steps, could be useful in general relativity. Unfortunately, 
due to the extensive algebra involved, this scheme has not yet been explicitly calculated, even for 
empty spaces. 

I. INTRODUCTION 

T HE usual approach to the study of the dif­
ferential geometric properties of a manifold is 

through the metric, which is effectively described 
by the functions representing the components of the 
metric tensor in each coordinate system. Another 
procedure is to use the structure of the infinitesimal 
parallel displacement as described by the connection. 
In standard general relativity, where the connection 
is required to be torsion free and metric, these 
descriptions are equivalent. Of the two it is perhaps 
the metric approach which seems to be more natural 
and intuitive and more closely related to ideal 
physical measurements. Further, the approach 
through the connection form has the disadvantage 
that it is not effectively productive of a geometry 
in the sense that the functions that are to represent 
the components of the connection in a particular 
coordinate system cannot be assigned arbitrarily but 
must satisfy differential equations expressing the 
condition that the connection be metric. The direct 
metric approach, on the other hand, does not give 
rise to this difficulty and geometries can be produced 
at will merely by assigning the functions to represent 
the components of the metric tensor in a particular 
coordinate system, subject only to qualitative con­
ditions such as differentiability, signature, and the 
nonvanishing of the determinant. 

However, both the metric and connection form 
approaches do have some drawbacks, particularly 
in applications in general relativity. In the first 
place, the description of the geometry in terms of 

• Supported by a grant from the National Science Founda­
tion. 
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the functions representing the components of the 
metric tensor or connection form is clearly coordinate 
dependent. This fact leads to many theoretical and 
practical difficulties, for example, the practical prob­
lem of an effective test for whether Or not two such 
sets of functions represent geometries that are equiv­
alent, at least locally. Secondly, the structure of the 
Einstein equations, even in empty space, is of such 
complexity that the study of their properties has 
been very difficult and slow. 

The purpose of this paper is to demonstrate 
explicitly the existence of an alternate approach to 
the geometry of spaces satisfying the Einstein equa­
tions. In this approach the local geometry of such 
a space is described by first placing it in one of a 
finite number of discrete types and then assigning 
to it a finite set of scalar functions, the special 
invariant functions, which can be chosen arbitrarily, 
but which are uniquely representative of the local 
geometry. It should be emphasized that these are 
not merely the usual second-order invariant func­
tions such as the Petrov scalars. These latter are 
not effectively productive of a geometry since they 
can only be chosen subject to differential conditions, 
and thus are not entirely suitable to represent the 
geometry. Further, they are complete only in cer­
tain cases. 

This approach has several advantages. First, it 
provides an invariant, one-to-one representation of 
the local geometry. That is, two spaces satisfying 
the Einstein equations are locally equivalent geo­
metrically if, and only if, they are of the same type 
and their special invariant functions agree in form, 
not just in value, providing an effective test of the 
local equivalence of such spaces. Further, for a 
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given matter tensor, all geometries solving the 
Einstein equations can be locally represented by 
such a type and set of special invariant functions. 
Finally, within each type the functions can be 
prescribed arbitrarily, subject only to qualitative 
conditions, as the components of the metric tensor 
as discussed above. Thus all local solutions to the 
Einstein equations can be produced at will within 
this representation, which of course, leads to many 
advantages, e.g., a combination law for solutions, 
such as the addition of special invariant functions, 
and other possibilities discussed in the conclusion 
below. 

Of course, this type and special function scheme 
is admittedly further removed from ordinary geo­
metric measurements than either the metric or 
connection approach. However, the type and special 
invariant functions can be obtained from local 
metric or parallel displacement measurements by 
a finite number of algebraic steps and a finite 
number of differentiations. Thus, in principle, follow­
ing the prescription outlined below, a device could 
be constructed which would directly read off the 
type and special invariant functions from local 
measurements. Conversely, given a type and set 
of special invariant functions, the analytic expression 
for the components of the metric tensor can be 
obtained from the analytic expression for the special 
invariant functions by algebraic steps (possibly in­
finite in number). 

Thus, this type and special function scheme is 
as legitimate a representation for local geometry 
as the assignment of functions to represent the 
components of the metric tensor. Further, it has 
the added advantages of providing this representa­
tion invariantly, with a "built-in" test for the local 
equivalence of geometries, and of giving a complete 
classification of the local solutions to Einstein 
equations. 

Unfortunately, because of the extensive amount 
of algebraic manipulation required, this scheme has 
not been explicitly carried through in closed form, 
even for empty spaces. Thus, this paper is essentially 
in the form of a proof of an existence theorem 
stating that such a scheme can be obtained by a 
finite number of algebraic steps and providing a 
definite prescription for doing so. It should be 
noted that since these are essentially algebraic steps, 
a computer might conceivably be useful in complet­
ing the task. 

The central theorem used in this paper, that the 
geometry is characterized by the Riemann tensor 
and its covariant derivatives, is well known. For a 

statement and proof of it see Cartan. 1 A canonical 
form for the Riemann tensor in Einstein spaces was 
first obtained by Petrov,2 using the special algebraic 
properties of such a tensor. Komar3 showed how 
the Petrov functions could be used to establish 
canonical coordinates when they are independent. 
For a further discussion of these problems and a 
guide to the associated literature see Bergmann, 4 

or Petrov.5 

The main features of this paper are as follows. 
First, (Sec. II), it presents an explicit procedure 
for obtaining a canonical or standard form for any 
Riemann tensor and its sequence of covariant de­
rivatives. This procedure does not depend on special 
algebraic properties, such as Petrov's for the Weyl 
tensor, giving it more generality for use with higher­
order invariants, but causing it to be more complex 
in practical applications. This makes possible the 
effective, general application of the equivalence 
theorem mentioned above. Secondly, (Sec. III), 
from an analysis of the resulting algebraic differential 
equations, it gives a definite prescription for replac­
ing the resulting invariant functions, which cannot 
be chosen arbitrarily by the nonredundant and 
independent special invariant functions which are 
arbitrary, but which still provide an invariant one­
to-one representation of the local geometry, within 
each type. Section IV mentions briefly some further 
problems and possible applications. The Appendix 
contains a proof of a theorem on product representa­
tions needed in Sec. II. 

Before proceeding, we should explicitly state the 
more important restrictions which we are assuming 
throughout this paper. First, we are only concerned 
with local and analytic solutions. Second, the matter 
theories and tensors must be algebraic in the matter 
fields and their derivatives. Finally, we are only 
concerned with points in the manifold having the 
property that the rank and other discrete algebraic 
structures of analytic matrices are constant over 
some neighborhood of the point. Since such discrete 
properties can change only discontinuously, and 
thus across boundaries of dimensions less than 4, 
it is felt that these jumps can be dealt with later 
as limiting cases of situations studied here. They will 
naturally play a central role in possible global 

1 E. Cartan, Le~ons sur la geometrie des espaces de Riemann 
(Gauthier-Villars Paris, 1951), 2nd ed. 

2 A. Petrov, Sci. Not. Kazan State Univ. 114, 55 (1954). 
3 A. Komar, Phys. Rev. 111, 1182 (1958). 
4 P. G. Bergmann, in Handbuch der PhY8ik, edited by S. 

Fliigge (Springer-Verlag, Berlin, 1962), Vol. IV, pp. 203-272. 
6 A. S. Petrow (Petrov), Einstein-Raume, (Akademie­

Verlag, Berlin, 1964). 
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extensions involving the matching of metric and 
matter fields of different type. 

II. CANONICAL FORM FOR RIEMANN TENSOR 
AND ITS DERIVATIVES 

We now sketch an effective procedure for de­
termining whether two metric and matter fields are 
coordinate equivalent by giving an invariant de­
scription of them. The approach is based on the 
well-known fact that the Riemann tensor and its 
covariant derivatives provide a complete set of 
invariants for the metric field. The problem, how­
ever, is that the components of these tensors must 
be expressed in some standard frame and the re­
sulting functions in some standard coordinate system 
before this test is effective. In this section, we solve 
this problem by studying the direct sum of product 
(tensor) representations of the Lorentz group and 
by showing how to obtain a canonical form for a 
vector (i.e., a sequence of tensors of increasing rank) 
under such a representation. 

The geometric formalism used here is that due 
to Cartan. I The metric is expressed in terms of 
differential forms, w· = W~dXi; a, i = 0, 1, 2, 3, 

d82 
= TJabW·Wb; TJab = diag (-1, +1, +1, +1) (1) 

satisfying the structure equations 

In the following we will refer to such a set of 
forms as a frame, although, strictly speaking, it is 
the isomorphic, dual set of tangent vectors which 
should be so denoted. Other terms which have been 
used for such frames are tetrad and vierbein. 

In addition, we consider matter variables, PA, 

which may include scalars, vectors, tensors, satisfy­
ing covariant equations 

F(PA, PA; • ••. ) = 0 (4) 

and yielding a matter tensor T.b(PA)' We assume 
further that the PA themselves are directly observ­
able (once the frame is determined) and do not 
include gauge-dependent quantities. 

Consider now the sequence consisting of the com­
ponents of the Riemann tensor and its first N 
covariant derivatives relative to the frame w

a
• 

(5) 

A convenient method for ordering quantities with 
such multiple sets of indices is to order the indices 
lexicographically. Thus if a represents the set 
(a l ••• an) and {3 represents the set (b l ..• bn) 

then we will say that a precedes (3 if the first nonzero 
term in the sequence a l - bl ••. an - b" is less 
than zero. This is of course just the procedure used 
for ordering words in a dictionary. Hence, using 
Greek indices to denote such sequences so ordered, 
the expressions in (5) could be denoted by V~N) 
where the superscript N denotes the number of 
covariant derivatives represented and a runs from 
1 to II == L~~: 4i.6 Similarly, let w'" represent the 
corresponding base forms associated with the tensor 
products of the appropriate number of w·. Lorentz 
transformations of the w· then result in transforma­
tions of the w"', yielding a (reducible) representation 
of the Lorentz group, RN (L), over the vector space 
V(N), spanned by the w"'. Note that the dimension 
of V(N) is not N but is II. 

The next step is to choose frames obtainable from 
the w'" by transformations of RN(L) in such a way 
that V~N) takes some standard form. Of course, if 
RN(L) were the full group of linear transformations 
over V(N), we could choose a transformation g with 
w'" = gw'" so that V(N) == V~N)W'" is along the first 
axis, that is, so that viN) "c 0 while the other compo­
nents are zero. This would then determine a natural 
standard form for V~N) and the corresponding frames 
would be standard. Since RN(L) is not so large, 
however, we cannot expect this to be possible for 
a general V~N) and must thus obtain a weakened 
substitute. 

In order to obtain such a generally applicable 
procedure for standardizing V~N) we will proceed as 
follows. First, for each admissible frame w'" (i.e., one 
obtained from the appropriate products of members 
of a Lorentz 4-frame) consider the sequence 

~ = {VI'" V., V 12 ••• V"''''",u ... VI .... } (6) 

consisting of the distinct vector subspaces of V(N) 

generated by all possible combinations of subsets 
of the basic set {w "'}. The ordering of the subspaces 
is important and for each ~ is defined as follows: 
If V"' .... "'i E ~ and V/l .... /l. E ~ then V"' .... "'i will 
precede V/l .... /l. if j < k or if j = k and al ... aj 

precedes {31 ... (3k lexicographically. 
Clearly, for each ~, there is a first V''''''''''i with 

V(N) E V"' .... "'i. After a transformation of RN(L) 
to another base w'" with corresponding ~ we will 
obtain another set of indices {31 •.. (3k with V/l .... /l. 

the first element of ~ for which V(N) E V/l""/l .. 

Further, we can compare al ... aj to {31 ... {3k 

by the same ordering as was used for the sequence 

6 These components clearly will not all be independent 
for actual Riemann tensors because of the Bianchi identities, 
etc., However, these restrictions will be automatically im­
posed by the differential equations (2) and (3) themselves. 
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in ~. Using this ordering we will now let a 1 ••• an 

represent the first such set of indices for all possible 
~. Thus we have, for some w", 

(7) 

while, for any g E RN(L), if c;l = gw" and 

(8) 

then we must have either k > n or else k = n 
in which case we must have that the sequence 
131 ••• 13k does not precede al ... an lexicographically. 
Any such set w" satisfying this condition will be 
called a frame adapted to v (N) • 

Note that this set of indices al .. , an and thus 
the set of frames adapted to v (N), is well defined 
and independent of the original choice of the Lorentz 
frame w". It might.perhaps be thought that this 
is not true and that the ordering of the w" might 
be relevant, because of the dependence of the defini­
tions on ordering. That this is not the case is easily 
seen from the fact that a change of ordering of the 
w" can be brought about by a transformation of 
RN(L) since we have not restricted ourselves to the 
proper Lorentz group. Thus, since al ... an is 
obtained by a minimization procedure over a set 
including such changes, the result is independent 
of the original choice of w", or wd

• 

We next define H~ to be. the set of transforma­
tions y E RN (L) which take the adapted frame 
w" into another such. Thus, g E H~ if and only if 

(9) 

where w" = gw". Of course, H~ so defined could 
conceivably depend on the choice of original adapted 
frame w". However, if H~ is the resulting set defined 
by a different choice, w" = Yow", of adapted frame, 
then clearly 

1l~ = H~g~/, with go E H~. (10) 

Hence 1l~ is homeomorphic to H~ and in the 
following H~ can be considered to be defined only 
up to such a homeomorphism. What is of direct 
physical significance, of course, is the set of adapted 
frames (which will be later narrowed down to the 
set of standard frames) which is completely and 
uniquely defined. H~ is merely a certain subset of 
the transformation between such frames. It is clear 
that the sequence al ... a,. and H~ can be obtained 
by a finite number of algebraic operations. In fact, 
the expression of condition (7) for a given set 
al ... a,. together with the condition that g E RN(L) 
consititute a finite set of simultaneous algebraic 
equations. Since, for fixed N, there are only a finite 

set of sequences of indices, the first one for which 
these equations are consistent can be found algebra­
ically as can the resulting set H~, which is thus 
an algebraic variety. Of course, we may not yet 
have arrived at a definite standard form for the 
V~N) since for some g E H~ the Xi as defined in (9) 
may not be numerically equal to the Ai. Hence let 
us now define the functions A;(g) for g E H~ from 
the following equation 

V(N) = Al (y)gw'" + ... + An(g)gw"'; g E H~. (11) 

We must thus deal with the possibility that some 
of the Ai(g) may vary with g E H~, and we must 
further refine H~. 

From the Appendix, it is seen that the only 
possibilities are that Al(g) either is constant, achieves 
the value 1 or -1, or reaches a maximum as g 
ranges over H~. These alternatives, in that order, 
will be called a standard form for AI' Sets H~, 
i = 1 ... n will then be defined inductively as 
those elements of Hf-l for which Ai achieves its 
standard form. For convenience, denote by SN the 
sequence {0!1 ... an, jl ... jp, kl ... k.} where the 
j's and k's are those indices for which Ai = +1, 
Ak = -1. Further, let f~ denote the remaining set 
of determined values of the A's, and let H~ be 
denoted by GN

• The f: may be nonconstant func­
tions as may the sequence SN' However, as mentioned 
in the introduction, we are only considering regions 
over which SN is constant. 

Again we must show that these results are in­
dependent of our original choice of adapted frames. 
Suppose that we had started with a different choice, 
w" = yaw a. Then the functions Xi (g) for g E 1l~ 
would have been defined by an equation analogous 
to (11) and it is easy to see that 

X,(g) = A;(ggo) for g E 1l~ (12) 

so that the functions Xi and Ai have homeomorphic 
domains and take the same value at corresponding 
points under this homeomorphism. As a consequence, 
the standard form and values obtained for the Xi 
using the procedure described above would be pre­
cisely the same as those obtained from the Ai' Thus 
we have that the sequence SN and the values f~ are 
uniquely defined scalars, independent of the original 
choice of adapted frame. 

Finally, and most important for our applications, 
we have the result that two sets of matrices of the 
form in expression (5) can be transformed into each 
other by a Lorentz transformation if, and only if, they 
have the same SN and f~. 

The basic equivalence theorem I states that two 
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geometries are locally equivalent if, and only if, 
their corresponding sequences of Riemann tensor 
and its covariant derivatives, relative to Lorentz 
frames, can be transformed into each other by a 
Lorentz transformation. Actually, in the statement 
given by Cartan, a stronger result is obtained, 
namely, that there is an integer k such that only 
those covariant derivatives of order less than or 
equal to k need be compared in order to determine 
local geometric equivalence. This integer k is the 
smallest integer for which the covariant derivatives 
of order k can all be expressed as a function of the 
lower-order covariant derivatives and the Riemann 
tensor itself. The concise and beautiful proof of this 
theorem by Cartan is an excellent example of the 
power of the method of differential forms in dif­
ferential geometry. 

In order to apply this to our results above, let 
Xi be any admissible set of coordinates over the 
region considered and let r(N) be the rank of the 
matrix 

{af~/ax'} . (13) 

(Note that in our notation f~ contains information 
on all derivatives up to order N.) Clearly the integer 
k is the first integer for which 

r(k - 1) = r(k) and Gk-l = Gk
• (14) 

For the special case of Einstein spaces, Kerr7 has 
related k and Gk to the set of motions in the manifold. 
The set of frames w" = g-lwG for g E Gk we will 
call the set of standard frames. 

In these terms, then, the test in the equivalence 
theorem can be stated in terms of the equality of 
k, Sk, f! for two geometries. This is still not an 
effective test, however, since the f! may be non­
constants and may be expressed in different coor­
dinates. To obviate this, standard coordinate sys­
tems3

•
4 can be introduced as follows. Let PI ... pr(k) 

be the first set of indices for which the matrix 

(15) 

has rank r(k). The standard coordinate systems are 
then defined to be those for which 

s = 1 ... r(k). (16) 

Let the sequence Sk with P. adjoined be called s~ 
and the remaining set of f!, depending only on the 
determined part of the standard coordinates x· be 
denoted by f~. Hence, two geometries are locally 
equivalent if, and only if, they have the same k, s~, 
and their functions f~ have the same form. This is 

7 R. P. Kerr, J. Math. Mech. 12, 33 (1963). 

thus an effective test, locally applicable to any analytic 
geometry. 

Clearly, this procedure can be easily extended 
to include the matter variables merely by adding 
the components of the tensors representing the 
matter variables to the end of the sequence of 
covariant derivatives of the Riemann tensor, and 
making possible further reductions of these to 
standard forms. This will yield a possible reduction 
in Gk and a possible extension of the determined part 
of the standard coordinates to xt, t = 1 ... f ~ r(k). 

In summary, then, we have given an explicit 
procedure for locally determining in a finite number 
of algebraic steps, invariant integers k, sequences 
S, and functions F Q for each set of metric and 
matter fields in such a way that two sets of metric 
and matter fields can be locally transformed into 
each other if, and only if, they have the same k, S 
and their functions F Q agree in form. s Again, this 
is clearly an effective test. 

The integer k and the sequence S, determine what 
we call the type of the metric and matter fields. 
Thus the type and the form of the invariant func­
tions, F Q, provide an invariant and unique local 
representation of the metric and matter fields. How­
ever, this is not satisfactory yet since we cannot 
choose the functions F Q arbitrarily and then be sure 
that they will correspond to a possible geometry 
and set of matter fields, since they must clearly 
satisfy differential conditions, even without the field 
equations themselves. In other words, a geometry 
and set of matter fields cannot be constructed from 
an arbitrary choice for these invariant functions, 
as for example, the geometry can from an arbitrary 
choice (modulo qualitative conditions) of compo­
nents for the metric tensor. Further, we do not yet 
know which types do actually correspond to possible 
geometries and matter fields. 

The purpose of the next section is to show how 
to obviate these difficulties by replacing the F Q with 
functions which can be chosen arbitrarily and which 
can be obtained from the F Q by finite number of 
algebraic steps and differentiations. 

III. THE SPECIAL INVARIANT FUNCTIONS 

We now study the differential equations relating 
the function F Q to the standard frame, w", and the 
connection forms, w: = w:.dxi, together with the 
Einstein and matter equations themselves, for each 
possible type k, S. These will clearly consist of (2), 
(3), and (4) together with 

8 Note that the Fo depend only on the determined part of 
the standard coordinate system. 
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(17) 

Rabcd;fll···;~i+l = Rabcdifll"'fli,fli+J. 

- w~'i+,Rfbcd;"""i - ••• ; i = 0 .. , k - 1 (18) 

aFo/axi = 0 for j > jo, (19) 

in which the Rabcd and derivatives are expressed 
in terms of the functions F 0 and Xl (i.e., only the 
determined part of the standard coordinate systems) 
in a definite algebraic manner determined by the 
type k, S. The same is true for the matter variables, 
PA' These equations are then to be solved for the 
w~, w!. and the F 0, which are to be regarded as 
the unknowns. For brevity let us group these un­
knowns under the symbol y'. The differential equa­
tions (2), (3), (4), (17), (18), and (19) can then 
be written 

GM (y', y'. I, Xl) = 0, (20) 

where the GM are linear in the first derivatives of 
the y', linear in the Xl (the determined part of the 
standard coordinates) and at most quadratic in the 
y' themselves. 

This is precisely the form of differential equation 
for which a thorough analysis is available. 9 The 
result of this analysis will be to show that by an 
algebraic operation on (20), the functions y' can 
be replaced by new functions, which we call the 
special invariant functions, which can be assigned 
arbitrarily. These special invariant functions can be 
obtained from the y' by a finite number of differentia­
tions and, conversely, the analytic expressions for 
the y' are uniquely determined from those of the 
special invariant functions. 

The first step is to assign an order to the set 
of derivatives of the y'. Assume that an order 
has been placed on y' themselves. We say that 
an.+·· '+R.y• / (ax°),,' .. , cax3

)", precedes amo+ ... +m.y '" / 

(axo)m • ... (ox3 )m. if mo + ... + ma > no + ... + na, 
or if mo + ... + ma = no + .. , + na and z < w, 
or if z = wand no + ... + na = mo + ... + rn3 
and the sequence no '" na precedes rno ... ma 
lexicographically. Next we assume that each of the 
equations (20) are solved for their highest derivatives 
in terms of all others. The resulting equations are 
then differentiated and the results written in the 
same form, i.e., solved for their highest derivatives. 
If more than one expression is obtained for the 
same derivative, the equality of the two expressions 
is added as another condition. The process is then 
iterated, the equations being solved for highest 

9 J. Ritt, Algebraic Differential Equations (American Math­
ematical Society Colloquium Publications, New York, 1932), 
Vol. XIV, especially Chap. IX and X. 

derivatives, and duplications eliminatea. From a 
basic theorem of Riquier9 this procedure must 
terminate after a finite number of steps, either in 
inconsistent equations or in equations for which 
further differentiations do not impose essentially 
new conditions. Let us now assume that this has 
been completed and that the resultant equations are 

o"'+"'+n'y'/(oxOr ... (ax3t' = HR.·.·..... (21) 

in which the H's on the right side depend only on 
the Xl and on the derivatives of the y's of rank 
less than that of the derivative appearing on the 
left side, and in which no derivative of a quantity 
on the left side of one equations occurs in the right 
side of another. 

If the equations are consistent, the y' can then 
be replaced by an equivalent set of arbitrary func­
tions as follows: for fixed z, let {n! 1 .. , {n~} be 
the set of sequences of derivatives of y' occurring 
on the left side of the equations (21). We now de­
compose y' into a finite number of terms 

y' = f~ + xOf~ + .. , + (xOtf:, (22) 

where a is the largest of the integers n~ ... n~, 
and where f~ ... f:-l do not depend on XO (f: may 
depend on XO). The operation is then repeated on 
each of the f~ in terms of Xl, so that 

f~ = f:o + xlf;l + ... + (Xl)bf~b' (23) 

where now b is the largest number of those nf for 
which n~ > i. The process is then iterated and the 
final result can be written 

y' = L: (xo)' ... (xay g; ...• 
+ L: (xo)" .,. (x3)'h: ... ., (24) 

where each of the sums is over a finite number of 
terms and the functions g and h may not depend 
on all the variables. The division into two separate 
sums is made on the following basis. The second 
sum, involving the h's, contains those monomials 
which can be written as multiples of a monomial 
in the x's in which the exponents of Xi are one of 
the sequences {n!} ... {n~ I. The first sum consists 
of the remainder of terms. Notice that the g's and 
h's can be obtained from a given y' by a finite 
number of differentiations and algebraic steps. 
Finally, if the sequence {n! 1 ••. {n~1 is vacuous, 
that is, if y' itself and none of its derivatives are 
solved for in the equations, then r = ... = s = 0 
and h" = O. 

A straightforward consideration~ of the differential 
equations then shows that the g's can be arbitrarily 
chosen (apart from analyticity considerations) and the 
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h's, and thus y's, are then uniquely determined, their 
analytic expression being obtainable from that of the 
g's. Thus the g's provide a complete and unique 
representation of the solutions to (21). By referring 
the y' back to the "'~' ",!., and F Q it is then possible 
to determine which of the g's have the property 
of changing some of the F Q when they are changed 
and which do not, i.e., those which only change 
the "'~' ",! •. Without loss of generality, then, we could 
prescribe some definite choice (e.g., zero) for these 
latter g's, yielding a further, and final, determination 
of the canonical frames and coordinate systems. The 
remaining g's are then called the special invariant 
functions. 

IV. CONCLUSION 

In summary, then, we have given an explicit 
prescription for obtaining a complete, one-to-one, 
and invariant classification and representation of the 
local, analytic metric and matter fields by a finite 
number of algebraic steps. The special invariant 
functions themselves can be chosen arbitrarily and 
can be obtained from the usual metric and matter 
fields by a finite number of algebraic steps and 
differentiations. 

Clearly the amount of algebra required to make 
this scheme explicit, even for the empty-space case, 
is very formidable. However, the procedure would 
essentially be a trial and error one in which all 
possible types are tried, leading to all possible 
combinations of functions F Q and variables x' sub­
stituted for the Riemann components and derivatives 
in (2), (3), (17), (18), (19). The reSUlting equations 
would then be differentiated and tested for consist­
ency and the special invariant functions picked out, 
essentially a repetitive-type task. Since the equa­
tions are at most quadratic in dependent and linear 
in the independent variables, a digital computer 
might be taught how to substitute all possible 
types to give all possiblitities for (15), then dif­
ferentiate them and test for consistency, byarrang­
ing them as matrices. The feasibility of such a 
program is currently being studied. 

In addition, there are many other possibilities. 
Can the classification procedure be better handled 
in the holonomy group approach?IO Can the entire 
problem be given more succinct and satisfactory 
treatment in the bundle theory of connections? What 
about global extensions and matching of types across 
boundaries? Can this procedure be applied to give 
an effective test for whether or not a matter theory 
can be "geometrized" in the sense of Misner and 

10 J. Schell, J. Math. Phys. 2, 202 (1961). 

Wheeler?l1 What is the significance of the "super­
position" process of adding special invariant func­
tions? What are the representations and significance 
of geodesics in this approach? 
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APPENDIX 

In this Appendix we consider the problems arising 
in Sec. II concerned with the establishment of a 
standard form for each of the components of a 
"vector" in a direct sum of product spaces under 
the induced representation of the Lorentz group. 
It will not be convenient here to discuss the effects 
of transforming the basis as leaving the vector fixed 
but changing its components. Rather, we use the 
fully equivalent, "active," picture of the trans­
formation as changing the vector but leaving the 
base fixed. Thus, for g E RN (L), rather than con­
sidering V~N) as the components of the same vector 
relative to a new frame, we consider them as com­
ponents of a new vector relative to the same frame, 
which, with an unimportant abuse of notation, we 
denote by gV(N) so that gV(N) == ii~N)",a. Further, 
for simplicity, we consider only one of the terms 
in this direct sum, that is, only the direct product 
of a fixed number of terms, m. The extension to the 
general case with a sum over m is immediate. 

Thus, let the ",'" ... ",,,. of (6) each be product 
of m of the ",". For convenience, let us relabel these 
to simply be ",1 ••• ",n. Letting A run from 1 to n, 
A' from n + 1 to 4m

, and x from 1 to 4m
, we then 

have that ",AI constitute the complementary set of 
base vectors in this tensor space of rank n. Further 
let V be the space spanned by ",A and W the space 
spanned by the ",AI. Hence (dropping the super­
script N) we have that v E V with no v A equal to 
zero. The result we must prove in this Appendix 
can then be stated 

Theorem: Ifv E V, if H == {g: gv E Vjg E R(L)I, 
and if no component of gv is zero for g E H, then 
as g ranges over H, any particular component of 
gv is either constant, reaches the value 1 or -1, 
or achieves a maximum. 

First, note that since H is algebraically defined 
it has at most a finite number of connected compo­
nents. If we can prove this result for one component 
the extension to the full H itself is immediate. Thus, 

11 C. Misner and J. Wheeler, Ann. Phys. (N. Y.) 2, 525 
(1957). 
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for the remainder, we will consider only the compo­
nent of the identity of H, which we will denote 
by H o. Since H 0 is arcwise connected, the variation 
of the components of gv for g E H 0 can be studied 
by considering the variation of gv for g along all 
possible paths in H 0 passing through the origin. 
The differential equations for the components of gv 
along such a path would then be 

dv.(t)/dt = X:(t)v.(t), (Al) 

where, since along the path vet) E V, VA' = 0. 
Thus as far as the variation in the components 
of v. are concerned we need only consider those 
paths for which 

X:(t) = [M~t) ~l; M(t) = n X n matrix. (A2) 

In other words, as far as variations of v. are con­
cerned we need only consider those paths in H () 
for which the tangent vector is in the subspace 
spanned by the Lie algebra of the connected group 
leaving V invariant. We may assume that H 0 has 
been restricted to this group. 

Hence, we need only consider those X:(t) of the 
form (A2) where 

M!(t) = L!: 5~: .. , 5!: + ... 
+ 5!; ... 5!:=:L!:, (A3) 

where the sequences a1 ••• am and b1 '" bm cor­
respond to the indices A and B respectively, and 
where the L! represent constant elements of the 
basic Lorentz Lie algebra. Thus our problem is 
reduced to finding which L! will yield an element 
of the form (A2). To this end let 11(a2 am) be 
the set of indices, a, for which 

wa (8) wa
• (8) ... (8) wa

,. E V (A4) 

and define similarly 12(ah aa ... am) etc. Thus the 
only admissible L! for (A3) will be those for which 

unless 

bE 11(a2 " . am) implies a E 11(a2 ... am) 

bE 12(a1, aa '" am) 

(A5) 

(A6) 

implies a E 12(a1, aa ... am), etc., 

for all a1 .,. am. In other words, the only L! in 
(A3) we need consider are those representing Lorentz 
or spatial rotations in planes described by pairs of 
indices (a, b), satisfying (A6). 

If the set of such admissible L's constitutes a 

subalgebra of the compact group of pure spatial 
rotations, then the desired result is obtained since 
in this case each component of gv will each achieve 
a maximum value, if it does not pass through 1 or -1. 

However, if infinitesimal Lorentz velocity trans­
formations are among the admissible L's, the group 
is not compact and it is not immediately obvious 
that the list of alternatives for gv in the theorem 
is exhaustive. Actually, the proof following will show 
that in this case each component of gv is either 
constant or reaches 1 or -1. 

For this purpose, let us assume that the indices 
are so ordered that the pair (0, 1) is among those 
satisfying (A6). Thus we have available the one­
dimensional subgroup of velocity transformations 
along the first space axis. We will now show that 
under the assumptions of the theorem, as granges 
over this group, each component of gv is either 
constant or reaches 1 or -1. 

First assume that all irrelevant indices (i.e., those 
other than 0, 1) have been deleted, and let i = 0, 1. 
Next, writing the components of V in expanded, 
tensor form, V .... ;, let us relate these components to 
the null components defined as follows: 

a = p, q, (A7) 

where the C's are defined inductively, 

C~ = (-Ita (;+1) ; u'" == {o if a = P, (A8) 

1 if a = q 
and 

c~f:::: = (-lta(i+1)C~:::~. (A9) 

A simple analysis of (AI) in this case shows that 
the variations of the w's along the path will be 
of the form 

Wa ... ~(t) = exp (rQ ... ~t)Wa ... ~(O); (no sum). (AI0) 

r a"'~ == number of p's among a '" f3 minus the 
number of q's among a ... f3. In terms of the V's 
this becomes 

(AU) 

Thus, as was expected, the vet) are polynomials in 
exponentials of t. Now, using the hypothesis of the 
theorem that none of the Vi.,,;(t) can be zero, we 
show that actually only one power of exp (t) will 
contribute to the right side of (AU). 

Let r1 be the minimum and r2 the maximum value 
of r a"'~ for which the coefficient of exp (r " ... ~t) in 
the right side of (AU) is not zero. Thus as t ~ ± ex> 

the sign of Vi ... ;(t) approaches that of the coefficient 
of exp (r2t) or that of the coefficient of exp (rlt) 
respectively. First, assume that r l ;:o!E r 2 • We show 
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that this implies that the signs of Vi •.• ;(t) as t -+ + 0> 

and - 0> are opposite, and that hence Vi"'; is zero 
for some finite value of t, contradicting the hy­
pothesis. What we consider is the product of the 
asymptotic parts of Vi ••• j(t) for t -+ ± CD. Such 
products will clearly be of the form 

(AI2) 

in which for each nonzero term in the sum on the 
:ight the number of indices ex ••• {j equal to q 
IS not equal to the number of indices /J. ••• /J equa! 
to q, since we are assuming r 1 ~ r2. 

We now show by induction on m (the number 
of indices i ... j) that if some Xi"'; is not equal to 
zero then there is another set of indices, i' ... j', with 

(AI3) 

so that at least one of them is negative. This is 
clearly true for m = 1. If m > 1, use (A9) to write 
(AI2) as 

X - C"Y···PCP .. ·.(y 
ik'''j - k .. ·j k,"j P7 .. ·P.P.p· ... 

+ Yn "'P,M" .• ) + (_1)'+IZk,"j (AI4) 

or, grouping the first terms under the symbol X["'j, 

X ik ... j = X' ... j + (_l)i+1Zk ... j • (A15 

From the induction hypothesis there is another set 
of indices, k' .,. j', with X{,'''jX~,,, .j' < O. Simple 
algebra then shows that not all possible products 
of two of the following, X Ok"';' X 1k ... j , X W ''';'' 

X 1k .... j • can be positive, so at least one must be 
negative, and the induction process is established 
for all m. 

In terms of the v's this means that if r 1 ~ r2 , 

the product of the signs of the asymptotic parts 
of Vi ... ; for plus and minus infinity is negative for 
at least one set of indices. Since this would imply 
that Vi ... j(t) = 0 for some finite t, contradicting 
the hypothesis of the minimal nature of V, we thus 
must have r l = r2 • 

Hence, the behavior of each component under 
this one-dimensional group is that of (AlO) in which 
only one power of the exp (t) appears. If this is zero 
this component is constant under these trans~ 
formations. If it is not zero, this component will 
achieve the value 1 if it is positive or -1 if it is 
negative, for one value of t. 

This thus shows that the possibilities listed in 
the theorem are exhaustive and completes the proof. 
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The solution of Einstein's field equations, Rl/ - !g;jR = 811'KPU.Uj + Xg;j, for a line element of the 
form da' = (dxO)2 - a'(xl)(dx1)2 + 2.8(x1)dxOdxS - -y!(xl)(dx2)2 - a2(xl)(dxl )1 is found. The density, p, 
may be a function of position, and the cosmological constant>. is not necessary in order to have a finite 
density. The solution reduces to that of GOOel if the variable a is constant. If the requirement for an 
empty universe is made (Ri/ = 0), the solution is conformally fiat. The characteristics of the conformal 
curvature tensor are also obtained. 

ONE would like to have a general metric satisfy­
ing Einstein's field equations 

R;j - !g;jR = 81rKpUjUj + }...g;j, (1) 

and which allows a geodesic congruence which has 
expansion, rotation, shear, and an arbitrary choice 
(including zero) for the cosmological constant }....1 

In the process of constructing general models, it is 
useful to construct more restricted models to gain 
insight into the problem. A relatively simple metric 
which satisfies all of Eqs. (1) has been constructed. 
The model has zero expansion and shear, but has 
nonvanishing rotation and density whether or not 
the cosmological constant vanishes. A brief descrip­
tion of the solution is as follows. 

The line element which has these properties is 
first expressed in the form 

dl = (d,x0)2 - (d,xl)2 + 2fJ d,x0 d:l 

- 'l(dxl? - a2(dx3
)2, (2) 

where a, fJ, and 'Yare functions which depend only 
on the variable Xl. This choice gives a possible non­
zero IIrotation" vector 

; ( )-1/2 ilkl auk 
w = - g E Uj axl , (3) 

with zero expansion and shear. The quantities 
Roo, R u , R12, and Ra3 do not necessarily vanish 
identically. The matrices of the covariant gH and 
the contravariant gil are 

1 o 
o -1 

fJ 

o 
fJ 

o 
o -'Y2 

o o 

o 
o 
o 

2 -a 

* Sponsored by the Mathematics Research Center, United 
States Army, Madison, Wisconsin, under Contract No. 
DA-11-()22-0RD-2059. 

10. Heckman and E. Schucking in Gravitation-An 
IntroducMn to Current Research, editea by L. Witten (John 
Wiley & Sons, Inc., New York, 1962), pp. 438-469. 

and 

'Y2/(f + 'Y2) 0 fJ/(f + ,./) 0 

0 -1 0 0 (4) 
fJ/(fJ2 + ,,/') 0 -1/(fJ2 + 1'2) 0 

0 0 0 -2 -a 

respectively. The determinant, Igi/I, of the metric 
is g = -a2(fl + 1'2). 

The nonvanishing Christoffel symbols2 of the first 
and second kind may be computed from the deriva­
tives of the metric tensor and are 

and 

and 

1'0.12 = !fJ1' 
1'1.22 = 'Y'Yl, 

1'2.01 = !fJ1, 

1'1,02 = -tfJ1' 

1'2,12 = -'Y'Yl, 

1'1.33 = aa1, 

1'3.13 = -aal; (5) 
r~1 = !fJfJl/(fJ2 + 'Y2

), 

r~2 = h('YfJ1 - 2fJ'Yl)/(fJ2 + 1'2), 
r;2 = iPlI 
r~2 = -1'1'11 
r!a:= -aal1 

r~l = -!fJti(fJ2 + 'Y2
), 

r~2 = !(fJfJl + 2'Y'Y1)/(fJ2 + 1'2), 

r~3 = at/a. 
The subscripts denote the derivative with respect 
to the variable Xl. 

The components of the contracted Riemann­
Christoffel tensor (summation convention used), 

R .. = ar~j _ 1 a2(1?g g) 
" ax' 2 ax' ax' 

+ .1 r~. a(log g) - r' .rm (6) 
Jr.. ax' m. .f, 

I L. P. Eisenhart, Riemannian Geometry (Princeton Uni­
versity Press, Princeton, New Jersey, 1926), notes that 

r;.ik ,., [jk, ~1 and r'ik = {A}. 
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may now be calculated. The ten independent com- and 
ponentsare 2all/a + !A2/a2 

= -2A, (19) 

Roo = !(3U(fi + ,i), which are integrated to give 

R02 = Ual{31a-l + {311 - (31'Y'YI/({32 + 'Y2)], {3 = ±(A/B) Ina + C (20) 
and ROI = R03 = R12 = R 13 = R23 = 0, 

Rll = -alla-1 (7) a~ = D - >.a2 
- !A 2 log a (A = const) , (21) 

- !({3~ + 2'Y~ + 2{3{311 + 2'Y'Yll)j({32 + 'Y2) 

+ ({3{31 + 'Y'Yl)2/({32 + 'Y2Y, 
R22 = -'Y'Yll - 'Y'Yla la - 1 

- !(2.B2'Y~ + 'Y2.B~ - 2{3'Y{3l'Yl)/({32 + 'Y2), 
and 

R33 = -aall - aal({3.Bl + 'Y'Yl)/({32 + I). 
We may solve for the functions a, (3, and'Y satisfy­

ing Eqs. (1) in the co-moving coordinate system 
u i = o~(Uj = gfkUk = go;). The equations which 
must be satisfied are (omitting the equations which 
vanish identically): 

Roo - !R = p' + A, R02 - !.BR = {3p' + {3A, 

Rll + !R = - A, R22 + h 2R = {32 p' - 'Y2A, (8) 

and 

R33 + !a2R = -a2A, where p' = 81rKp. 

These equations give rise to the following relations 

{3Roo - R02 = 0, (9) 

{3R02 - R22 + ({32 + 'Y2)Rll = 0, (10) 

R33 - a2Rll = 0, (1I) 

and (13) 
-A = !(Roo - a-2R33). 

The functional form of the R;;'s may be substituted 
into the relations (9), (10), and (11) to obtain the 
relations 

fJI({3.Bl + 'Y'YI)/({32 + 'Y2) - {311 - (31ala-1 = 0, (14) 

and 
al({3{3l + 'Y'Yl)/({32 + I) - all = O. (15) 

The two relations (14) and (15) may then be 
integrated to yield 

where C and D are integration constants. 
The quantities of most interest, p' and w" are 

[from Eqs. (3), (7), (13), and (16)] 

p' = A2/a2 + 2A = !A2/a2 - 2all/a. (22) 

w3 = a- 1fJl/({32 + 'Y2)! = ±A/a2, 

and Iwl2 = A2/a2. (23) 

We see from Eq. (22) that the density, p', need not 
depend on the cosmological constant A, unless a 
is constant, which would require A = -lA2/a2 = 
-!p'. 

In order to put the results in a more convenient 
form, a change in variables may be taken such that 
a = exp [_y2]; the important quantities are then 

ds2 = (a.x0? + 2fJ dxo dx2 _ 02 dy2 

- 'Y2(dx2)2 - a2(dx3)2, (24) 

a = exp [_y2], .B = ±(A/B)y2 + C, (25) 

'Y2 = !(A/BYy2 - (A/B2
) exp [-2y2] 

+ D/B2 - [(A/B)y2 + cy, (26) 
02 = 4y2 

X exp [-2y2]/{D + !A2y2 - A exp [_2y2]}, (27) 

p' = A 2 exp [2y2] + 2A, (28) 
and 

(29) 

This solution [expressed in Eqs. (24)-(29)], which 
satisfies all of Eqs. (1), does not require A to have a 
specific value if a is not constant. 

For a constant (let a = 1), we may solve the 
general equations by using Eq. (16) and the fact that 
Rll = Raa = O. The result is that fJ must satisfy the 
equation 

or 
fJ11 - tA2({3 - d) = 0, (30) 

or 

and 
(16) ({3 - d)ll - ! A 2({3 - d) = O. 

(17) Equation (30) is readily integrated, and the results 

where A and B are constants of integration. 
The use of Eqs. (7), (13), (16), and (17) enables 

us to write down the equations 

{3~ = (A 2/B2)aUa2 (18) 

are 

a = 1, fJ = b[exp (ax!) + c exp (-ax!)] + d, 

"(2 = !b2
[ exp (axl) - c exp (- axl)]2 - fl. 

p' = R = - 2A = a2
, 

(31) 
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and w3 = V2a, where a2(=!A2), b, c, and dare 
integration constants. This solution is the general 
fonn of Godel's solution.3 The first fonn of Godel's 
solution is equivalent to letting a = b = 1 and 
c = d = O. The properties of Gooel's solution are 
easier to understand if we study this general solution. 

A solution of Eqs. (1) for the line element (2) 
with the conditions R;; = 0 also requires that the 
Riemann-Christoffel tensor R;kl = 0, and the space 
is confonnally flat. 

The Weyl curvature tensor2 

c!: = Ri: + !(c5iR: - c5;m) 
+ !(c5:R! - c5lRD + iR(c5;c5~ - c5ic5D (32) 

is useful in the classification' of the different solu­
tions of Einstein's field equations. The classifica­
tion corresponds to the Petrov6

•
6 classification for 

vacuum field solutions since in that case Cii
kl = 

Rii"I' The Weyl curvature tensor has the properties 

cii 
kl = 0, C~kl + C~/i + Ci ik = 0, (33) 

and 
Cii 

kl = Ci • Ik = -cit = -c!; 

The eigenvalues of (34) are therefore 

Al = A4 = !(A2/a2)[T\ + (n - aUA2)l], 

A2 = A5 = --fiA 2/a2
, 

and 

Aa = A6 = !(A2/a2)[n- - (n - aU A2)t] , 

(36) 

where the quantity a~ is detennined by Eq. (21). 
The eigenvalues Xl and Xa may be taken as the 

independent characteristics of the Weyl curvature 
tensor since Xl + X3 = - X2 • The characteristics 
corresponding to Godel's solution are obtained by 
letting a be constant (a = 1). The result is that 
Xl = iA2 and Xa = _-fiA2. The classification of the 
solution of Einstein's equations for the line element 
(24) would correspond to the Petrov type 1. 

If we interpret y as a radial coordinate, X2 as an 
angular coordinate, X3 as a z coordinate, and XO as a. 
time coordinate, the line element (24) may be 
written in the fonn 

ds2 = dt2 + 2fJ'r dt dcp - (15')2 dr2 

- ('¥'Yr2 dcp2 - (a')2 di, 

The symmetry properties allow us to write the with 
tensor as a six-by-six matrix C~, where the labels a 
and fJ take the values and 

01-1, 02-2, 03-3, 23-4, 31-5, and 12-6. 

The eigenvalues of this matrix are found by solving 
the equation 

IC; - All = o. (34) 

The sum of the eigenvalues will be zero (from 
Ci} = 0). 

The nonvanishing components of the Weyl curva­
ture tensor for the line element (24) are 

~~ = C~: = C~ = C! 

= -rl- A2/a2 + !alfJfJd[a(fJ2 + "l)], 
cg = C~~ = C~ = C; 

= lfJA2/a2 
- !alfJl(2fJ2 + '/)/[a~ + 'l)], 

(37) 

The line element in this fonn shows the cylindrical 
symmetry about the z axis. The rotation vector 
and the density are functions of the distance, r, 
from the z axis. The Godel universe also has cylindri­
cal symmetry, but the rotation vector and the 
density are constant. 

The line element (24) has at least three Killing 
vectors, one of which must be timelike. The Killing 
vectors are ~(l) i = D~, t(2) i = 15;, and t~3) = 15;. 
The space admits the following transfonnations into 
itself: 

(I) X
O = x,o + a, (II) x2 = X'2 + a, 

Xi = X,i, i ~ 0; Xi = X'i, i ~ 2; 
C~~ = C~~ = C~ = C; = !alfJd[a(fJ2 + '/)], 
~~ = C~~ = C~ = C! = -T\A 2/a2

, 

(35) and 

and 

C~~ = C~~ = C: = C~ 
= iA2/a2 

- !alfJ.Bl/[a(fJ2 + '/)]. ----
3 K. Giidel, Rev. Mod. Phys. 21, 447 (1949). 
4 J. Ehlers and W. Kundt, Gravitation: An Introduction 

To Current Research, edited by L. Witten (John Wiley & Sons, 
Inc., New York, 1962) p. 49ft'. 

6 A. Z. Petrov, Recent Developments in General Relativity 
(Pergamon Press, Inc., New York, 1962) p. 371ft'. 

6 M. Landau and S. Lifshitz, The Clas8ical Theory of Fields, 
(Addison-Wesley Publishing Company, Inc., Reading, Mass., 
1962), 2nd. ed., pp. 305-307. 

(III) x3 = X
/3 + a, 

Xi = X'i, i ~ 3, 

where a is an arbitrary real number. 
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An upper bound, on the probability that a fluctuation of a given size will occur in given time interval 
has been derived. The bound is useful because it is small for some cases of interest. The fluctuations ol 
the kinetic energy in a canonical ensemble have been considered as an example. 

I. INTRODUCTION 

ONE of the problems in the Gibbsian or ensemble 
form of statistical mechanics is in the connection 

between the numbers the theory allows one to 
compute, which are the ensemble mean values of 
dynamical variables, and the numbers one actually 
measures in an experiment. In particular, one can 
ask what the time dependence of the average value 
of a variable implies about the time behavior of a 
single system in the ensemble. For the case of equi­
librium ensembles, where the average value of most 
variables of interest is independent of time, the most 
famous attack on this question has been the ergodic 
theory, which attempts to prove that the ensemble 
average of a variable is the same as the time average 
of that variable for any single member of the ensem­
ble, the physical rational being that it is the time 
average of a single system that is actually measured. 
For classical systems, which are the only kind we 
shall treat here, Khinchin'sl version of the ergodic 
theory is probably the most satisfactory. Using 
Birkoff's theorem and Tschebysheff's inequality, 
Khinchin proves that, for large systems, the time 
average of certain types of variables (those with 
small dispersion) is very near the ensemble average, 
for the great majority of the systems in the ensem­
ble. 2 This approach to the problem leaves open the 
question of fluctuations, that is, the question of how 
long one should expect to watch a given system from 
the ensemble before the variable of interest deviates 
from the ensemble mean value by a certain amount. 
Attempts to investigate this point usually involve 
the estimation of mean recurrence times of certain 
nonequilibrium states for various models.a- 6 These 
calculations, while illuminating, are extremely 

. * .Supported in part by the U. S. Atomic Energy Com­
IDlSSlOn. 

I A. I. Khinchin, Mathematical Foundations of Statistical 
Mechanics (Dover Publications, Inc., New York, 1949). 

2 C. Truesdale, Ergodic Theories (Academic Press Inc., 
New York, 1961). 

a M. Kac, Bull. Am. Math. Soc. 53, 1002 (1947). 
4 P. Hemmer, L. C. Maximon, and H. Wergeland, Phys. 

Rev. 111, 689 (1958). 
6 E. Montroll, Lectures in Theoretical Physics (Interscience 

Publishers, Inc., New York, 1961), Vol. III. 

specialized and do not seem to provide any general 
method of approach. 

Even if one regards the above considerations 
and related ones as being satisfactory for the equi­
librium case, this approach is not suitable for non­
equilibrium ensembles. In particular one would like 
to know, in the nonequilibrium case, that the be­
havior of an individual member of the ensemble is in 
some sense well represented over time intervals long 
compared to the characterestic times (relaxation 
times) of the physical situation. We shall present an 
approach here which is sort of in the spirit of 
Khinchin's treatment of the ergodic problem but 
which is equally suitable to equilibrium and non­
equilibrium ensembles. In particular, we have found 
an upper bound for the probability of selecting a 
system, from the ensemble, which will undergo a 
fluctuation of a given size in a given time interval. 
The bound is a useful one because, for large systems 
and appropriate dynamical variables, it is small. 

In Sec. II we give a precise statement of the 
problem and find the bound. In Sec. III we show why 
the bound is a useful one. 

n. DERIVATION OF THE BOUND 

We let x stand for a point in the phase space of the 
system (r space). Then x = {XI, X2, .,. }, where the 
Xi are the individual coordinates and momenta of 
the system. The dynamics of the system are con­
tained in the transformation T, which takes the 
phase point X (at time 0) into the point T,x (at 
time t). By Liouville's theorem we know the Jacobian 
of this transformation is 1. A general dynamical 
variable is a function A(x). We can indicate the 
time dependence of A(x), due to the natural motion 
of the system, by the notation A(x, t) = A(T,x) . 
If H is the Hamiltonian of the system then the 
equations of motion in Poisson bracket notation are 

aA(x, t)/dt = {A(x, t), H(x)}. (1) 

The state of the system at t = 0 is given by a nor­
malized probability density function f(x) defined 
on r. If an event is represented by a set G then the 
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probability of the event is the measure or volume 
of the set, mG = f Gf(x)dV. The average value of a 
dynamical variable will be denoted by 

A(t) = (A(x, t» = fr A(x, t)f(x) dV. (2) 

We shall use the standard notation {x: . .. I for the 
set of points x such that whatever condition stands 
to the right of the colon is satisfied. 

We define a set R(a, r) where a and T are fixed 
positive real numbers by 

R(a, T) = {x : IA(x, t) - A(t)1 ~ a 

for some O:S; t :s; T}. (3) 

This is the set of points for which the dynamical 
variable A deviates from its ensemble average by 
more than a at least once during the time interval 0 
to T. If the probability of this event, pea, T) = 
mR(a, T) is a small number for suitable choices of A, 
a and T, then the ensemble mean behavior of A is a 
good picture of the actual behavior of A for most of 
the systems in the ensemble, at least over the time 
interval T. We shall find a useful upper bound for 
pea, T). 

In the argument that follows we shall not maintain 
high standards of rigor but will keep things as simple 
and as geometrical as possible. Therefore without 
going into it any further, we shall simply assume that 
the distribution function f(x) and the dynamical 
variable A(x, t) are sufficiently well behaved in x 
and t to justify the required operations. This seems 
to be verifiable for most applications. We shall 
assume also that A(x, t), H(x) , and f(x) are such 
that m{x : IA(x, t)! = co I = 0 for all t. 

We have directly from the definition of the set 
R(a, T) the following properties 

dP(a. T)/da :s; 0, (4a) 

dP(a, T)/dT ~ 0, (4b) 

pea, T) ~ O. (4 c) 

In order to bound pea, T) we first look for a bound of 
dP(a, T)/dT. To do this we introduce a new set 

Sea, t) = Ix: IA(x, t) - Aet)1 ~ a}. (5) 

It is clear that R(a, T) is the union of the family of 
Sea, t) for all t ~ 0 and t :s; T. pea, T), which is the 
volume of R(a, T) (using f(x) dV as the volume ele­
ment) is then the volume generated by the set 
Sea, t) as t varies from 0 to T. We assume the sets 
R(a, T) and Sea, t) both have well-defined boundary 
surfaces which divide r into parts exterior to and 
interior to the sets, and such that to get from the 
interior to the exterior one must cross the boundary 

FIG. 1. r space. 

surface. Now since R(a, T) is generated by the 
moving set Sea, t), it is clear that any increase of 
the size of R(a, T) in the time interval T to T + AT 
must come from the region where the boundaries of 
R(a, T) and Sea, T) coincide. In Fig. 1 we indicate 
geometrically the situation, where we have shown 
the boundaries of the three sets R(a, T), Sea, T), 
and Sea, T + AT). The increase in volume of R(a, r) 
in the time interval AT is 

pea, T + AT) - pea, T) = AP(a, T) 

and is shown in Fig. 1 as the cross-hatched areas. 
We have somewhat oversimplified the geometry 
in Fig. 1 since the set Sea, r) is actually bounded by 
two distinct surfaces, A(x, T) = A(T) ± a. Let us 
consider the contribution of the surface A(x, r) = 
A(T) + a to AP(a, T) first. If AT is very small we 
can write the volume element in the cross hatched 
region as an element dS of the surface of S (a, T) 
times the normal distance to the surface of 
Sea, T + Ar). If in time AT a point x on the first 
surface goes into a point x + Ax on the second then 
we must have VA(x, T)·Ax + [oA(x, T)/oT]Ar = 
[o.A(T)/oTJAT. The outward pointing normal to the 
surface is given by -VA (x, T)/IVA(x, T)I and 
therefore the normal distance dn between the 
surfaces at the point x is given by 

VA 1 o(A - A) 
dn=-IVA/'Ax=IVA/ aT AT. 

The increase in the volume from the neighborhood of 
x is then 

f(x) dS dn = [f(x) IVArl o(A - A)/oT] AT dS. 

We must integrate this over that portion of the 
surface of Sea, T) which coincides with the boundary 
of R(a, T) and for which o(A - A)/oT > 0 [only 
these portions give an increase in the volume of 
R(a, T)J. This region of integration, which is part 
of the surface A (x, T) = A(r) + a we shall call Gl • 

The contribution from this surface to AP(a, T) 
is then 

1 f(x)[o(A - A)/oT] IV A r l dS AT. 
G. 
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By exactly the same kind of argument we get the 
contribution to M(a, T) from the surface A(x, T) = 
A(T) - 0'. to be 

1 f(x)[-o(A - A)/OT] IVAI-IdS fJoT 
G. 

where G2 is that part of the surface A(x, T) 
A(T) - 0'. which coincides with the boundary of 
R(a, T) and for which -o(A - A)/OT > O. The 
sum of these two contributions is the total change 
tl.P(a, T). Letting tl.T -? 0 we obtain 

dP(a, T)/dT = L, f(x)[o(A - A)/OT] IVAI-l dS 

+ i.f(x)[-o(A - A)/OT] IVAI-IdS. (5) 

Since the first integral has o(A - A)/o7" > 0 in 
GI and in the second -o(A - A)/OT > 0 in G2 , 

we can replace ±o(A - A)/OT by 10(A - A)/OTI 
without changing the integrals. But the integrands 
are now positive and therefore we can only increase 
the integrals if we enlarge the regions of integration. 
Hence the inequality 

dP(a, T)/dT 

$ i-1u f(x) la(A - A)/aTIIVAI- l 
dS 

+ i-1-a f(x) 10(A - A)/oTI IV A 1-1 dS, (6) 

where the integration now goes over the entire 
surfaces A(x, T) = A(T) ± 0'.. If one integrates both 
sides of this expression a bound for pea, T) is ob­
tained, however it is not very useful since it involves 
surface integrals which are not convenient to evalu­
ate. In order to modify this we shall need the fol­
lowing elementary theorem which relates an (n - 1)­
dimensional surface integral to the derivative of an n­
dimensional volume integral. 

r g(x) IVBrl dS = dd r g(x) dVlv-a. (7) 
JB(zl-a Y JB(zl<. 

The integral on the left is over the surface defined 
by B(x) = a and the integral on the right is over 
the volume where B(x) < y and the derivative of the 
volume integral is evaluated at a. A brief discussion 
of (7) which is quite simple to prove is given in 
Ref. 1. Applying (7) to (6) we obtain 

dP(a, T)/dT 

d f -:::; -d f(x) 10(A - A)/oTI dVI._1u 
Y A(Z.Tl<. 

d f -+ -d f(x) 10(A - A)/oTI dVl.-.i-a. 
y A(z.Tl<. 

(8) 

Now let us integrate both sides of (8) over 0'., from 

0'.1, to co. We obtain 

£~ [dP(a, T)/dT] do: :::; 1(2.Tl<'" K(x, T) dV 

where 

- f K(x, T) dV 
A(z,r)<1(f')+a1 

+ L(z.Tl<1(Tl-a, K(x, T) dV 

- £(Ml<-'" K(x, T) dV, 

K(x, T) = f(x) la{A(x, T) - A(T)}/OTI. 

We now assume that the set where A(x, T) < 00 

differs from r by at most a set of zero volume and 
that the set where A(x, T) < - 00 has zero volume. 
The previous formula becomes 

£~ [dP(a, T)/dT] do: :::; h K(x, T) dV 

- f _ K(x, T) dV + f _ K(x, T) dV. 
A<A+aJ, A<A-al 

If we combine the first two terms on the right we 
obtain 

f'" [dP(a, T)/dT] do: 
a, 

$ £>1+a, K(x, T) dV + L<1-a, K(x, T) dV, (9) 

or, combining the two regions of integration and 
putting in the explicit form of K(x, T) 

f'" [dP(a, T)/dT] do: $1 _ 10{A(x, T) 
a, IA(2.Tl-A(Tl I>a, 

- A(T)}/ilTl f(x) dV. (10) 

The right-hand side can be put in more convenient 
form if we replace the time derivative terms by 
Poisson brackets (1). We can also transfer the time 
dependence into the function f, by the usual trick 
of changing the variable of integration from x to 
TTX and using Liouville's theorem. Equation (10) 
becomes 

f'" [dP(a, T)/dT] do: S; f _ I {A(x), H(x)} 
a, A.I(zl-A(TlI>", 

- dA(T)/dTI f(x, T) dV. (11) 

To get the right-hand side in its final form, we multi­
ply the integrand by [A(x) - A(T)]2a~2 > 1 and 
then allow the integration over all of r. 

f'" dP(a, T) do: < a~211 {A(x), H(x)} - dAHl 
a, dT r dT 

X [A(x) - A (T)rf(x , T) dV. (12) 

We shall define 
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D(T) = II {A(x), H(x)} - dA(T)/dTI 
X [A(x) - A (T)]2/(x , T) dV, 

= (I {A(x), H(x)} - ({A(x), H(x» I 
X [A(x) - (A(X»]2). 

(13) 

We shall see in the next section that it is possible 
to investigate D(T) for some cases of interest. Now 
let us integrate (12) from 0 to T to obtain (assuming 
that we can interchange the order of the integrations) 

i~ pea, T) da ~ i~ pea, 0) da 

+ a~2 { D( T') dT'. (14) 

Now from the definition of P, R, and S we have 

pea, 0) = mR(a, 0) 

= mS(a, 0) = J _ I(x) dV, 
1..4. (~) -..4. (0) I>" 

~ a-2 l [A(x) - A(0)]2/(x) dV. 

If we set 

C = l [A(x) - A(0)]2/(x) dV 

= ([A (x) - (A(X»]2) (15) 
then 

pea, 0) ~ a-2c. (16) 

One should note that the averages in the definition 
of D(T) use I(x, T) while those in C use I(x, 0) = I(x). 
Now using (16) in (14) and doing the integration on 
the right we have 

1'" pea, T) da < a~lC + a~21T D(T') dT'. (17) 
", 0 

But P is a positive decreasing function of a therefore 
from the bound of Eq. (17) one can get a bound for 
the function pea, T) using the simple theorem proved 
in the Appendix. From Eq. (A3) we obtain 

pea, T) < 4Ca-2 + 8a -3 { D(T') dT'. (18) 

One could decrease the numerical coefficients some­
what and still maintain the inequality. This is the 
final form of the bound. If we have an equilibrium 
situation then I(x, T) = I(x) and from (13) one can 
see that D(T) is independent of T. Hence (18) be­
comes for equilibrium distribution 

pea, T) < 4Ca-2 + 8a-3TD. (19) 

Since dA (T) / dT = 0 when the system is in equi­
librium, we have 

D = ll{A(x), H(x)} I [A(x) - A]2/(x) dV. (20) 

m. APPLICATIONS 

In this section let us consider a simple applica­
tion of (19) for illustrative purposes. 

We shall consider an interacting gas of point 
molecules described by a canonical distribution 
function. We shall look at the fluctuations in the 
kinetic energy of the system. For this purpose we have 

x = {rl' PI ... rN, PN}, (21a) 

H(x) = K + V = :EpU2m , 
+ ! :E' V(lr, - rjD, (21b) 

i. i 
I(x) = Z-le-PH(~) 

= «(3/27rm)3N/2e-PH(z) / J e-fJv dr l ..• drN, (21 c) 

A(x) = K(x) = :E p~/2m, (21d) , 
{A(x), H(x)} = -:E' F(lr, - rjD'p'/m, (21e) 

i,i 

where 
F(lr, - rjD = aV(\r, - riD/or,. 

The spatial volume the system occupies will be n 
and we have assumed spherically symmetric forces. 
We have the usual results for (K) and (K2

). 

(K) = L (p!)/2m = (!)NkT, (22) , 
and 

L (P~p~)/4m2 = (K)2 + (!)N(kT?, (23) 
i. i 

C = «K2) - (K)2) = (!)N(kT)2. (24) 

The calculation of D is more tedious. From Eqs. 
(20) and (21) we have 

D = (8m3
Z)-l :E f I L;' F(\ri - riD·p,1 

k.1 '.' 

X (P~p~ - (p:)(PD)e-PH(Z) dr l •.. dpN 

~ (8m
3
Zfl L L;' f IF(\r. - riDep,1 

Ie, l 1.,2 

X (P!p~ - (p~)(pD)e-PH(Z) dr l ••• dpN' (25) 

If one defines the position pair distribution func­
tion, as usual, by 

Mrl , r2) = N(N - 1) 

X J e-Pv dr • ... drN / J e-Pv dr l ••• drN, (26) 

then the spatial part of the integrals in (25) can be 
written as 

(N2 
- N)-l J IF(lr, - rij)ep,IMr., rj) dr, drj. (27) 

If F is of finite range and the volume is large 12 
will be a function of Ir. - rjl alone and to order n-t, 
(27) can be replaced by 
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0.(N2 - N)-l fa IF(lrD.p;,Mlrl) dr 

= 2ro.(N2 - N)-Ip; i'" IF(r) I Mr)r2 dr. (28) 

We set 

Q = i'" IF(r)1 Mr)r2 dr. (29) 

Using (28) in (25) we can write 
D :::; rQo.(4mSN)-1 

where 

(PiPiP" ... ) 

X E [(P;p~p~) - (P;)(P!)(P~)], (30) 
;.k.1 

= (fJ/2rm)SN/2 f P,PiP" ... e-{JK dpi ... dpN' 

In Eq. (30) those tenns for which i, j, and k are all 
different vanish, because of the independence of the 
integrations. One considers then the possibilities 
i = k and i = l, both of which give the same result, and 
k = l. There are also tenns for which i = k = l but 
these are negligible (of order N-1

) compared to the 
others. Then 

D :::; rQo.(4m3N)-1 E' {2[(P~p~) - (P;)(P~)(P~)] 
i,i 

+ [(P;)(P~) - (p;)(p~l]}. (31) 

Evaluating the averages, one obtains 
D :::; 3rl (N - l)o.Q(2m/,8)SI2(2m3)-I. (32) 

Now let us consider the size of a in (19). Suppose 
we look for fluctuations in the kinetic energy which 
are some fixed fraction of the total average kinetic 
energy. Then we will have 

a = 'Y(K) = "I (!)NkT , (33) 

where "I is some number, presumably « 1 but inde­
dent of N. If we put (33), (32), and (24) into (20) 
we obtain 
P(,,(K), 7) :::; t('Y2Nfl 

+ (128V2/9)(Qo./N)(mkT)-1('Y3N)-1 7 • (34) 

As one expects, the right side of (34) vanishes in the 
thennodynamic limit, that is it can be made arbi­
trarily small if we choose a large enough system. This 
result depends essentially on two properties; (1) 
that Q is independent of 0. (or N) as 0. gets large 
and (2) that we are looking for macroscopic fluctua­
tions (33). We have made a rough calculation for 
argon gas, using the Lennard-Jones potential.6 

Taking T to be around 3000 K and using the low­
density approximation. 

Mr) ~ (N jo.te-{Jv(r) • 

• T. L. Hill, Introduction to Statistical Thermodynamics 
(Addison-Wesley Publishing Company, Reading, Massachu­
setts, 1960). 

We find that (34) becomes approximately 

P(,,(K), 7) :::; (t)(N'Y2)-1 + 10-167(0."13)-1 (35) 

in mks units. The only restriction on Nand 0. is 
that of low density; i.e., N as « 0. where a is the range 
of the potential. 

In conclusion we should like to mention the fol­
lowing two points. 

(1) The thing that makes the bound (18) useful, 
is that for macroscopic fluctuation, the bound be­
haves as N-1 (or 0.'-1) and therefore can be made 
small. This property does not depend on the choice 
of the canonical ensemble or the fact that we con­
sidered fluctuations of the kinetic energy. It is 
true for a certain class of distribution functions and 
dynamical variables. 

(2) One should not regard the bound (18) as giving 
the actual asymptotic behavior for pea, 7) as a 
function of N. In particular, for certain kinds of 
variables one can find a much stronger bound. In­
stead of making the step from (11) to (12) we can 
define a number D'(a, 7) by 

D'(a, 7) = f _ I {A(x), H(x) I 
IA(z)-A(T)I><> 

- d.A(7)/d7 I I(x, 7) dV. (36) 

We can also define C'(a) by 

C'(a) = pea, 0) = f _ f(x) dV. (37) 
IA( .. )-A(O)I>" 

Then by integrating (11) we obtain 

J'" pea, 7) 00 :::; f'" C'(a) 00 
al Ql 

+ [ D'(al, 7') dT'. (38) 

By the theorem in the Appendix 

pea, 7) :::; (a - aofl 

X [.C C'(a') 00' + { D'(ao, 7') d7/] (39) 

for any ao < a. For certain special cases one can 
find much stronger bounds for C' and D' than the 
ones (C and D) used in this paper. 

These two points will be treated in more detail 
in a following paper. 
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APPENDIX 

In this Appendix we shall consider briefly a 
simple theorem used in the body of the paper. It is 
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the following: If K(x) is a positive nonincreasing 
function for all x ~ 0 and if f.: K(x)dx ~ g(xo) 
for all Xo > 0 then K(x) ::; (x - xo)-lg(XO) for any 
Xo < x. 

Proof. For a given x, let Xo < x. Then 

g(xo} ~ 1~ K (x') dx' 

= t K(x') dx' + to K(x') dx' 

JOURNAL OF MATHEMATICAL PHYSICS 

~ t K(x') dx' ~ K(x)(x - xo). (AI) 

In particular, a possible choice of Xo (not necessarily 
the best one) is Xo = x/2. Then 

K(x) ::; 2g(!x)/x. (A2) 

For the particular application in this paper g(x) = 
a/x + b/x

2 so 

K(x) ::; 4a/x2 + 8b/x3
• (A3) 
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We consider matrix equations of the form dW /dz = [8, W], where 8 is 0. matrix function of z that is 
embedded in a given Lie algebra L-i.e., it is a curve in L. If the initial condition on W is in L, then 
W describes 0. curve in L. If the Killing form is used as a metric on L, then the behavior of the system 
is 0. pure rotation about an axis that is a function of z. A set of scalar invariants of such a system 
is obtained. These invariants form a set of conservation laws that the system obeys regardleBB of the 
detailed behavior of 8(z). 

If S describes a curve in some L1, which is a. semisimple subalgebra. of the algebra. L in which the 
whole system is embedded, then we can split the initial condition into two parts, one of which is in 
L1 and generates 0. solution in L1, the other in 0. subspace that is orthogonal to L1 and that generates 
0. curve that remains in the subspace. We can, then, obtain conservation laws that apply separately 
to the two parts. 

The results have application to quantum mechanics since the density matrix obeys this type of 
equation. They also have application to coupled mode theory if we use, instead of the vector the 
corresponding power density spectrum matrix or the like. 

INTRODUCTION 

THE p~rpose of this work is to study the matrix 
equatIon 

dW /dz = [8, W] = 8W - W8, (1) 

where 8 and Ware matrix-valued functions of z 
(which may be, instead, the time, t) that describe 
curves in L, a semisimple Lie algebra1

-
4 over a field 

of characteristic zero. We determine, in particular, 
the scalar-valued functions of one or more solutions 
of Eq. (1) that are independent of z. For example, 
if U and V are solutions of Eq. (1), the Killing form, 

1 M. Hamermesh, Group Theory and Ill! Application to 
Physical Problems (Addison-Wesley Publishing Company, 
Inc., Reading, Massachusetts 1962). 

2 P. M. Cohn, Lie Groups, in Cambridge Tract8 in Mathe­
matics and Mathematical Physics (Cambridge University Press, 
Cambridge, England, 1961), No. 46. 

8 E. B. Dynkin, "The Structures of Semi-Simple Algebras" 
Usp. Math. Nauk (N. S.) 2, No.4 (20) 1947, Am. Math. 
Soc. Transl. No. 17, 1950. 

, N. Jacobson, Lie Algebras (Interscience Publishers, John 
Wiley & Sons, Inc., New York, 1962). 

(U, V), is one such invariant. We also find higher­
order ones. 

Our purpose in doing this is to find conservation 
laws that the system obeys and which are a con­
sequence of the algebra involved and not of the 
detailed behavior of the system. The results, then, 
are useful in the study of systems for which an 
exact and explicit solution is unobtainable or 
impractical. 

Equations of the form of Eq. (1) occur in many 
contexts. In quantum mechanics, for example, the 
time derivative of the density matrix/ as usually 
defined, is (l/ih) times the commutator of the 
Hamiltonian and the density matrix. 

Another general area of application is in coupled 
mode theory.6,7 We may be given the vector dif-

'A. Messiah, Quantum Mechanics (North-Holland Pub­
lishing Company, Amsterdam, 1961), Vol. I, p. 331 fI. 

• M. C. Pease, J. Appl. Phys. 31,1988 (1960). 
7 M. C. Pease, J. Appl. Phys. 32, 1736 (1961). 
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ferential equation 

dx/dz = Sx, (2) 

where x is an n-dimensional vector written as a 
column matrix. The general solution to Eq. (2) can 
be obtained from the so-called matricant8 which is 
the matrix function of z and Zo that is the solution of 

aM(z, zo)/az = S(z)M(z, zo); M(zo, zo) = 1. (3) 

If, then, the initial condition of Eq. (2) at Zo is 
x(zo), the resultant solution is given by 

x(z) = M(z, zo)x(zo). (4) 

Equation (3) is not of the same form as Eq. (1). 
If, however, instead of M(z, zo), we consider 

W(z) = MWoM-1 = M(z, zo)WoM(zo, z), (5) 

then W(z) obeys Eq. (1). Wo is the initial condition 
on W, i.e., W(zo). 

Alternatively, we may find that S(z) is every­
where what we call K-skew-Hermitian.7 That is, 
we may discover that there exists a nonsingular 
constant Hermitian matrix, K, such that, at any z 

KS + StK = 0, (6) 

where the dagger indicates the Hermitian conjugate, 
which is the complex conjugate transpose of S. 

If so, we can define W as a linear combination 
of dyad solutions: 

(7) 

where the set Xi are a set of linearly independent 
solutions of Eq. (2), and the aii are constants. 
We find, then, that W(z), defined by Eq. (7) satisfies 
Eq. (1). 

The rationale behind Eqs. (6) and (7) depends on 
regarding K as providing a metric for the space, even 
though we have not required K to be positive def­
inite, (i.e., it is not a Hilbert space). We define what 
we call an improper inner product by (x, y) = xtKy. 

If A is any operator, we define its adjoint, AI/, 
by the requirement that, for any X and y in the space. 

(AI/x, y) = (x, Ay). 

Equation (6) is, then, the requirement that S be 
the negative of S', so that S is skew-self-adjoint. 
The set of all such matrices form the Lie algebra 
that is associated with the Lie group of what we 
call the K-unitary matrices-i.e., the matrices, M, 
such that MJI = M-t, which requires that 

MtKM = K. 

8 F. R. Gantmacher, The Theory of Matrices (Chelsea 
Publishing Company, New York, 1959), Chap. XIV. 

If S describes a curve in this algebra, we can show 
that M(z, zo), defined by Eq. (3), describes a curve 
in the Lie group. The W(z) of Eq. (1), then describes 
a curve in the algebra, providing Wo is in the algebra. 

The W(z) of Eq. (5) or (7) does not contain all 
the information contained in M(z, zo) or in x(z). 
It does, however, contain what is, for many purposes, 
the essential information. For example, the density 
matrix of quantum mechanics suppresses the phase 
information. However, it is usually only the mag­
nitude that is desired anyway, so that the elimination 
of the phase is a useful simplification of the problem. 

Much the same is true of Eq. (5) or (7). Equation 
(7) is a generalization of the "power density matrix" 
that has been found useful in the study of noise. 9 

We shall, then consider Eq. (1) and seek scalar 
functions of its solutions that are invariant and so 
give us conservation laws of the system. 

THE LIE ALGEBRA 

We consider an algebra, L, of n X n matrices 
over a suitable field F, although the results apply 
equally to the corresponding abstract algebra. I-a 

We assume throughout that L is finitely dimensioned 
and that F has characteristic zero. 

We assume that a basis has been chosen, con­
sisting of the matrices, X,. The structure constants 
are obtained as 

[X" Xj] = C~jXk' (8) 

where the summation convention applies and is used 
throughout. The structure constants are skew-sym­
metric in the lower indices 

(9) 

and obey the Jacobi identity: 

We expand an arbitrary element, A, in the algebra, 
on the basis: 

A = a'X,. (11) 

The "Killing form," or the "scalar product of 
Cartan," of two elements, A and B, of L will be 
written as 

(12) 

and the resultant metric as Yii 

(13) 

This, is, we note, a symmetric operator. 
9 L. D. Smullin and H. A. Haus, Noise in Electron Devices 

(Technology Press, Cambridge, Massachusetts, and John 
Wiley & Sons, Inc., New York, 1959), Chap. 3. 
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We also remind the reader of Cartan's criterion 
that, if, and only if, L is semisimple, g,j is non­
singular so that there exists an operator g'j such that 

giigik = c5~. (14) 

For the. main part of the development that follows, 
we do not need to assume semisimplicity. However, 
when we come to consider the situation when S(z) 
is embedded in a subalgebra, it will be necessary 
to assume that this subalgebra is semisimple, so 
that a reciprocal metric exists and Eq. (12) is a 
nonsingular form. 

Using the expansion of Eq. (11), and the fact 
that the X, are linearly independent, being a basis 
for the algebra, Eq. (1) becomes 

dwk/dz = 8'WjC~j' 

It is this equation that we study. 

n-INDEX e FORMS 

(15) 

We define what we call the n-index e form as the 
contraction of n structure constants: 

(16) 

The indices on the e form lists the first subscripts 
of the structure constants in the order of appearance. 
The superscript of each structure constant is con­
tracted with the second subscript of the following 
one. The superscript on the last structure constant 
is contracted with the second subscript of the first. 

The metric of Eq. (13) is the two-index e form: 

gii = eo;. (17) 

The n-index e form is evidently unchanged by a 
cyclic permutation of its indices. In general, distinct 
n-index e forms are obtained by any other permuta­
tion. There are, then, (n - I)! distinct n-index 
e forms obtained by all possible noncyclic permuta­
tions of the indices. 

The principal property of the e forms that concerns 
us is contained in the following: 

Lemma 1: With the e forms defined by Eq. (16), 

This follows immediately from the Jacobi identity, 
Eq. (10), with Eq. (9): 

Thus, the contraction of a. structure constant with 

an n-index e form may be written as the difference 
of two (n + I)-index e forms which differ only in 
the interchange of the first two indices. 

CONSERVATION LAWS 

The n-index e forms give us the elementary scalar 
invariants of Eq. (1). The theorem that applies is 
the following: 

Theorem 1: If U, V, W, ... are n solutions of 
Eq. (1), which may be distinct or not, and if these 
solutions are expanded on the basis as in Eq. (11), 
then the scalar quantity 

is invariant. 

From Eq. (15) we find that 

dp(n) /dz = (8"'UnC~'nvjwk '" + Ui8mVnC~ .. wk •.. 

+ UV8mWnC~ .. •.. + .. . )eiik 

(19) 

+ C~#ijl'" + ... } (20) 

by relabeling the dummy indices appropriately. 
Using the invariance of the e form for a cyclic 
permutation of its indices and Lemma 1, the 
bracketed terms in Eq. (20) are 

Hence 
dp(n)/dz = 0 

and the theorem is proved. 

(21) 

If we apply the theorem to the two-index e form, 
which is identical with gij, we obtain the invariance of 

(2) i j , . 
p = uv eij = uv'g,j = (U, V) (22) 

from Eq. (12). Hence, if we regard the Killing form 
(W, W) as the "square of the length" of W, and 
(U, V) as a generalized dot product of U and V, 
we see that Eq. (1) can be interpreted as indicating 
a rotation in the Lie algebra. 

This is not, however, the only invariant that is 
involved. In general any e form yields a scalar 
invariant. 

SYMMETRIZATION OF THE CONSERVATION LAWS 

From the theorem, the following is obvious: 

Corollary: In Theorem 1, we can replace the n-index 
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e form by any constant linear combination of the 
n-index e forms obtained by permuting the sub­
scripts. 

We may note that a permutation of the sub­
scripts of the e forms in Eq. (19) is equivalent to 
permuting the positions of U, V, W, ... in Eq. (19). 

With this corollary, then, we can set up combina­
tions of n-index e forms that have any desired 
symmetry. We define the n-index g form as the 
linear combination of n-index e forms that is fully 
symmetric. Since the e forms are already cyclicly 
symmetric, we can simplify the process somewhat, 
obtaining: 

+ em; + e,h;k + e,hk;, etc. (23) 

(Note that gjjkh as defined here is not the same as 
the g,;I;h that is sometimes used in relativity theory,lO 
which is defined as g,kg;h - g,hg;/o and so is not 
fully symmetric.) 

With the g forms, we obtain a set of conservation 
laws that are applicable to a single solution of Eq. 
(1). That is, the scalars 

(24) 

are conserved and are significant providing the g 
form involved is not the null operator. 

Not all the scalar invariants of Eq. (24) will be 
nontrivial. Indeed it seems to be true that, for a 
simple algebra at least, all the odd-index e forms 
are antisymmetric, so that the odd-index g forms 
are null. 

Neither are all of the invariants independent. 
The scalars, pC,.) of Eq. (24) are related to the co­
efficients of the characteristic equation of the linear 
operator adw = {W, -]. Hence there is an upper 
limit on the number that can be linearly independent. 
By example, we do find that the higher invariants 
may not be trivial. We show such an example later. 

We note, finally, the significance of definiteness 
in the g forms. If any of the forms of Eq. (24) is 
definite, it then follows that none of the coefficients 
can grow without limit with z. Neither can all of 
the coefficients decay simultaneously to zero. Thus 

10 J. L. S~~e, Relativity: The General Theory (North­
Holland Publishing Company, Amsterdam, 1960). 

the requirement that all of the nontrivial g forms 
be indefinite is a necessary, although not a sufficient 
condition for either amplification or attenuation. ' 

PARTIALLY SYMMETRIC CONSERVATION LAW 

Suppose, now, we consider a given symmetric 
g form of order (n - 1). If we contract it with c~. 
we obtain a linear combination of n-index e fo~: 
We call such a form a derived g form, and symbolize 
it with a prime, for example: 

g~;k = C;;glk = e;,k - e,;k' (25) 

We find that we obtain the same result if we 
compute c!,g,; and C~kg ... This is reasonable. Because 
of the cyclic symmetry of the e forms, there are 
only two distinct three-index e forms-e.g., eHI< and 
e,ki' The information contained in them is given 
fully in the two forms gm and g~ik' Hence there can 
be no additional linearly independent three-index 
forms. 

We can continue the process and obtain the 
doubly derived g forms 

= eHkh - eHAk - e;,kh + e;iMe. (26) 

We observe that g~~kh is antisymmetric in the inter­
change of either the first pair or the second pair, 
and symmetric in the simultaneous interchange of 
both pairs (and so has the same symmetry as the 
Riemann curvature tensor10

). 

We can find, by careful analysis, that there are 
exactly three linearly independent, singly derived 
four-index g forms, and. two doubly derived ones: 
Together with the fully symmetric form, these 
account for the six distinct four-index e forms. 
Presumably, the same thing can be done with the 
higher-order forms. 

The derived g forms, because of their antisym­
metries, do not generate nontrivial conservation laws 
for a single solution of Eq. (1). They do, however, 
generate invariant orthogonality relations. If we 
consider for example, g~;k' we see that any scalar 
such as w'w;wkg~il: or wiwjvkg~;k must be identically 
zero. However, uivjwkg~;J, may be nontrivial, so that 
its invariance gives us significant information about 
the mutual behavior of a triad of solutions U V , , , 
andW. 

L NOT SIMPLE 

We now consider, in this and the following sec­
tion, how the problem can be split and conservation 
laws obtained that apply to separate parts of the 
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solution. In this section 11 we consider what can be 
done if L is not a simple Lie algebra. In the following 
section, we consider how we can make use of the 
possibility that S(z) may be embedded in some 
smaller Lie algebra than L, the range of possible 
initial conditions. 

We consider, first, the case where L is semisimple 
but not simple. By the structure theorem,s.4 then, 
we can write L as 

L = L(1) E9 L(2l E9 ... E9 L(kl, (27) 

where the Lw are simple algebras that are ideals 
of L. We resolve the initial condition, Wo, into 

Wo = W01 + W02 + .. , WOk, (28) 

where WOi is in Lw. 
Also, we can split S(z) into 

S = S(1) + S(2) + .,. + S(,I,) , (29) 

where S, is in L(i)' If, now, we write 

W = W(ll + W(2) + .. , + W(k), (30) 

where Wei) is in L w , then W(O obeys the equation 

(31) 

since the commutator of S(i) and W(ih j ~ i, must 
vanish, both L (i) and L (j) being ideals of Land 
disjoint. 

Hence, we have split the problem into a set of 
problems in simple algebras. The conservation laws 
of L(o will, then, apply to Ww . 

If L is not semisimple, then we have So more 
difficult problem. By Levi's theorem/ we can write 
L = L(o) + L', where L(o) is the radical of L--i.e., 
the maximal soluble ideal of L-and L' is a semi­
simple algebra. We can, now, decompose L' as in 
Eq. (27), writing 

L = L(o) + L(1) + ... + L(1), (32) 

where Lu ) (i F 0) is a simple algebra. The algebra 
{L(o) + L(.,.o) J is, now, an ideal of L. 

We can write the initial condition uniquely, as 

Wo = Woo + W01 + ... + WOk, (33) 

where WOi is in Lw. Let W(O) and WH,.O) be such 
that 

dW«l)/dz = [SlW(O>l 

dWw/dz = [SlWW ] 

W(Ol(O) = Woo 

W(j)(O) = Woo. 
(34) 

Since {L(o) + LwJ is an ideal, Ww remains in 

11 We are indebted to E. Norman for callin~ our attention 
to the splitting discussed here when L is not 8lmple. 

this algebra. The solution to the whole problem is, 
then, given by 

W = W(O) + W O ) + '" + W(kl' (35) 

Thus we have split the problem into the sum of one 
wholly in the radical and a set of components each 
of which is in a subalgebra that is the sum of the 
radical and a simple algebra. Again, the conservation 
laws of these subalgebras apply to the appropriate 
parts of the solution. 

S(z) IN A SEMISIMPLE SUBALGEBRA 

Suppose, now, Eq. (1) is embedded in the Lie 
algebra, L, but S(z) is embedded in L 1, a subalgebra 
of L. In particular, suppose we admit the possibility 
that the initial condition on W of Eq. (1) is not in 
the smallest Lie algebra covering S(z). As an ex­
ample, we have mentioned, in Eq. (6), the possibility 
that S may be K-skew-Hermitian. Since the set 
of K-skew-Hermitian matrices is a Lie algebra over 
the field of real numbers, as may be easily verified, 
this defines L 1• However, unless we specifically re­
strict Wo to be K-skew-Hermitian also, we do not 
know that W is in L1I but instead only know that 
it is in the full algebra of n X n square matrices. 

We can ask, then, how we can use the properties 
of L 1, instead of those of L to derive conservation 
laws of the system. 

We find that, if L1 is semisimple, we can specify 
a linear subspace, M, which is not in general a 
subalgebra, with the properties that 

(A) The intersection of M and L1 is void, so that 
they have no element in common. 

CB) [M, L1J EM so that M is regenerated when 
it is commuted with L 1• Hence M and Ll are disjoint, 
and M is closed under commutation with L 1 • 

We can anticipate the later results here and 
observe that we can take M as the orthogonal 
complement of L1 under the Killing form. By 
Cartan's criterion, if L1 is semisimple, it can contain 
no element in common with its orthogonal comple­
ment. Hence, Property A is obtained. Property B 
is shown by the theorem that follows. 

We do not, however, need always to use the full 
orthogonal complement of L 1 • The problem may 
permit us to take as the M set a subspace of the 
orthogonal complement. Hence, we approach the 
problem slightly differently. We show that we can 
split any initial condition Wo, into two parts, one 
of which, W01, is in L 1, the other, W02' is orthogonal 
to L 1• We then show that by closing W02 with 
respect to commutation with L1> we obtain an M set. 
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The significance of this splitting of the initial 
condition is that then the entire problem is split. 
Provided that S is sufficiently well behaved to 
apply Taylor's theorem at least in overlapping 
segments of the desired interval, a solution of Eq. (1) 
will be entirely in L l , or entirely in M, depending 
on the initial condition. That is, we can now con­
sider the two equations 

dWt/dz = [S, WI], 

dW2/dz = [S, W2], 

W1(O) = WOI ' 

W2 (O) = W02 , 

(36) 

(37) 

then 

(44) 

In other words, if A is orthogonal to LI under 
the Killing form, so is the commutator of A with 
any element of L 1• Hence, so is the whole set ob­
tained from A by closure under commutation with L 1 • 

Equation (42) requires that, if A be expanded 
as a'X; then 

(45) 

and know that WI is wholly in LlI and W 2 wholly Then 
in M. The solution to Eq. (1) is then 

W(z) = W 1(z) + W 2(z). .(38) 

For the W 1 part, we can use the conservation 
laws of L l • For the W 2 part, we must use the in­
variants of L, but even they are simplified by the 
absence of any of the Ll terms from W 2' 

To obtain, now, the proper division of the initial 
condition, we use what is essentially the Gram­
Schmidt process. We want to find W 01 and W 02 

such that 

We find that these equations are satisfied by 

W01 = (Wo, Xp)laxa , 

W02 = Wo - W01 ' 

(39) 

(40) 

The Greek letter indices, here, are used to indicate 
L 1• That is, we assume Ll to be spanned by the 
set Xa , whereas L is spanned by the set X,. Then 
for any X'Y in L 1, 

(W02' X'Y) = (Wo, X'Y) - (WOIl X'Y) 

= (Wo, X'Y) - (Wo, Xp)g"a(Xa, X-y) 

= (Wo, X'Y) - (Wo, Xp)yflaya'Y (41) 

by Eq. (12). From Eq. (14), this vanishes. 
From W02, as determined by Eq. (40), we can 

obtain an M set. We do this by closing W02 with 
respect to commutation with L 1 ; that is, we form 
commutators of as high an order as necessary of 
W02 with the various X"" and pick out those that 
are linearly independent over the applicable field. 
That this process does generate a suitable M set 
is shown by the following: 

Theorem 2: If Ll is spanned by the set Xa , and 
if A is any element of L such that 

and if we define 
(A, L 1) = 0 

Ba = [A, Xa], 

(42) 

(43) 

and 

Now, since Ll is an algebra, c~p vanishes unless 
Xi is in L l • Hence we can replace j by')': 

(Ba, Xp) = c~jI(a'Y'Yi) = 0 (46) 

by Eq. (45). 
Hence orthogonality to an algebra under the 

Killing form is preserved by commutation with the 
algebra. 

The element W 02 was chosen to be orthogonal 
to Ll under the Killing form. The M set was obtained 
by closure for commutation with L 1• Hence the 
entire set is orthogonal to L 1• 

By Cartan's criterion, the Killing form is non­
singular for a semisimple algebra. Hence, if Ll is 
semisimple, no member of the set so obtained can 
be in LlI and the M set so obtained is disjoint 
from L 1• Hence the set so obtained has Properties A 
and B and is therefore an M set. 

This then demonstrates that, if S(z) is in L 1 , a 
semisimple subalgebra of the algebra L in which 
Eq. (1) is embedded, then Eq. (1) can be split into 
two problems, one of which is wholly in L 1, the 
other in an M set that is orthogonal to L 1 • Separate 
conservation laws will, then, apply to each part. 

EXAMPLES 

We have mentioned that the property of being 
K-skew-Hermitian, as defined in Eq. (6), defines 
an algebra over the real field. If S is known to be 
K-skew-Hermitian, then Ll is this algebra. The 
appropriate M set is, then the set of K-Hermitian 
matrices (KW - WtK = 0) which is i times L 1 • 

We can, then split the initial condition, W 0, into 
its K-skew-Hermitian and K-Hermitian parts and 
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treat each separately. In this case, we.can multiply 
Eq. (29) by i and obtain a new problem in L I • 

Hence we need only study Eq. (1) with the restric-
tion that both Sand Ware everywhere K -skew-
Hermitian. The conservation laws of this algebra 
apply separately to both parts. 

As a second example, let us consider the algebra 
defined by the multiplication table given in Table I. 
One example of this algebra is given by 

Xl = t [; ;J 
X2 = t [~ -~J 
Xa = t[i ~l o -, 

This is the algebra of all 2 X 2 matrices with zero 
trace. (More generally, it is an example of the 
"full Lorentz algebra.") 

We find that 

gij = diag (-4, -4, -4, 4, 4, 4). (47) 

Hence (reverting to a subscript notation) if we set 

W = WIXI + W 2X 2 + W3X3 + W4X. + wsXs + W6X6 

and W is a solution of Eq. (1), then 

p(2) = -4(w~ + w: + w: - w! 

- w~ - w~) = CI (48) 
is a constant. 

We can find, for this algebra, that eH/O is antisym­
metric, so that gUk is identically zero. 

The calculation of gijkh is tedious but straight­
forward. We find that p(4) is within a scalar constant, 

p(4) ex: (P(2»2 _ 4(WIW4 + W2W S + W3W 6)2. (49) 

Hence it follows that 

WIW. + W2WS + WaW6 = C2 (50) 

is a conservation law. 
Suppose, now, that S(z) is embedded, for example, 

in the linear envelope over the real field of Xl' X2, 

and Xa. This is a semisimple subalgebra. The cor­
responding M set is the linear envelope of X4 , Xs, 

and X6• Hence, in this case, we have the separate 
conservation laws that 

W~ + w; + w~ = CI, 

w! + w~ + w! = C2' 

In addition, Eq. (41) still applies. 

TABLE I. Multiplication table. 

Xl] X2] Xa] X.] X.] X6] 

[Xl 0 Xa - X. 0 X6 - X. 
[x. - x, 0 XI - X, 0 X. 
[X, X. - Xl 0 X. - X. 0 
[X. 0 X8 - X. 0 - Xa X2 

[X. - X8 0 X. Xa 0 -Xl 
[X6 x. - X. 0 - X2 XI 0 

In this case, we can express LI as the algebra of 
K-skew-Hermitian matrices with K = I. We can, 
however, easily find examples where this is not so. 

CONCLUSIONS 

We have found that, for a system described by 
Eq. (1), there exists a set of conservation laws that 
limit the behavior of the system. These laws are 
obtained from the structure of the Lie algebra in 
which the problem is embedded. Hence their applica­
tion requires no information other than the initial 
conditions and the algebra that is involved. 

A further refinement is possible, also, if the algebra 
is not simple. If the algebra is semisimple, but not 
simple, we can split the problem into parts, each 
of which is wholly within a simple algebra. If it is 
not semisimple, the solution can also be split into 
components, each of which is the sum of the radical 
and a simple algebra. In either case we can obtain 
invariants for the separated parts. 

It is also possible to split the problem if the system 
operator S(z) is embedded in a semisimple sub­
algebra, L l • In this case, we can split the problem 
into two problems, one in L I , the other in what 
we call an M space, which is a subspace of the orthog­
onal complement of LI with respect to the Killing 
form. Again we obtain separate invariants for the 
split parts of the problem. 
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.A formal solution of a fairly general nonhomogeneous, linear, second-order differential equation 
wIth a large parameter and a double transition point is presented. This equation arises, for instance, 
in the quasilinear theory of pressurized membrane shells of revolution. The fact that the solution 
which is of foremost importance in practical applications converges at infinity makes it convenient 
to use a direct approach, avoiding any transcendental transformation. The solution is described by 
means of influence functions which arise from a formal inductive process. The more important influence 
functions are tabulated. The results of two approximate asymptotic procedures are compared with 
the exact solution. 

I. INTRODUCTION Accordingly, the present paper is essentially con-

ASPECIFIC fonn of the differential equation fined to a discussion of the convergent nonhomo­
to be discussed in this paper arises in the quasi- geneous solution. 

linear theory of pressurized membrane shells of The limit fonn of the subject differential equation, 
revolution.1

,2 The general equation, however, is that is, the differential equation that arises if the 
of interest beyond this specific application.8 limit process k --+ Q) is made in the given differential 

The subject differential equation is real-valued, equation, is a Bessel equation of order 1. The con­
linear, and of second order. It has a large parameter, vergent nonhomogeneous limit solution is related 
k, and a double transition point. As such, it belongs to (but different from) the Lommel function Sp,t 
into the field of interest of the theory of asymptotic (Appendix A). 
expansions4 (as was pointed out by Sanders and The given differential equation, in which k is 
Liepins5

). Most of the work on this theory has been large but finite, contains additional tenns. Usually, 
concerned with homogeneous solutions; however, in problems of this kind, one deals with such ad­
the quasi-linear membrane shell equation is essen- ditional terms by means of a transcendental trans­
tially nonhomogeneous and, in its application, one fonnation, the aim being to reduce the given equation 
is mainly interested in one particular nonhomo- to its limit fonn. This procedure, which in general 
geneous solution which may be designated as the leads to asymptotic expansions, has several aspects 
"convergent" (at infinity) solution. Even in those which are undesirable from the point of view of 
shell problems where this convergent solution is practical applications. The transfonnation has to be 
not by itself sufficient, the role of the homogeneous evaluated anew numerically for each new case if 
solution is often confined to that of a boundary one requires the solution itself rather than certain 
layer correction to the convergent solution. isolated aspects of it; the transfonnation is com-

Now, while it is usually considered sufficient to plicated enough to make it difficult to visualize, 
obtain the homogeneous solution (from which the in a general manner, the differences between the 
nonhomogeneous solution may then be derived by actual solution and the limit solution. Furthennore, 
means of the method of variation of parameters), the analytical difficulties of the exact procedure are 
the particular nonhomogeneous solution that is re- often fonnidable enough to require, in practical 
quired in the present problem is much more easily applications, the introduction of simplifying assump­
derived directly. The reason for this somewhat tions; that is, in practice the method of asymptotic 
unusual situation lies in the fact that the required expansion is replaced by an approximate procedure, 
solution is convergent while the homogeneous solu- the degree of validity of which is not always readily 
tion is exponentially divergent (see Sec. VIII). ascertained (Sec. VII). 

* This work was supported in part by the National Aero- The approach used in the present paper is more 
nautics and Space Administration. direct. No transcendental transformation is made. 

1 P. F. Jordan, J. Aerospace Sci. 29, 213 (1962). The difference between the required solution and the 
2 P. F. Jordan, AlAA Publication CP-8, 200 (1964), and 

J. AIAA (to be published). limit solution is described by influence functions. 
I R. E. Langeri Phys. Rev. 51, 669 (1937). These influence functions are general functions, that 
• E.g., A. Erd~ yi, J. Math. Phys. 1, 16 (1960). 
6 J. L. Sanders and A. A. Liepins, J. AIAA 1,2105 (1963). is to say, they are independent of the specific param-
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eters that describe the additional terms in a given 
equation and they can therefore be tabulated once 
and for all. 

Three points are made: first, the influence func­
tions arise from a straightforward inductive pro­
cedure and are largely simple algebraic combinations 
of already tabulated functions; second, the more 
significant influence functions show a convenient 
convergency behavior; third, approximate proce­
dures require caution. Two approximate procedures 
were checked; though both appear plausible enough, 
neither of them sufficiently approximates even the 
first rank of influence functions. 

n. FORMULATION 

Consider the following generalized form of Liou­
ville's differential equation 

(}..2p + q]F + rFE + sFH = U, (1) 

where all quantities are supposed to be real valued, 
and X2 a large number. The functions p, q, r, s, 
and u are given functions of the coordinate ~, and 
F == F(t) is the unknown function (FE == dF(t)/d~, 
etc.). Equation (1) is said to have a single transition 
point if p(~) changes sign (within the ~-range to be 
considered) and is said to have a double transition 
point if (after a trivial shift of the coordinate, if 
necessary) the function p(~) can be written as 

pet) = t2p(~) 
with a finite function p which has no zero. 

We assume here that Eq. (1) has a double transi­
tion point,8 and assume also that 8(0) :;6 O. Then, 
dividing by >,,2p(E), we may rewrite Eq. (1) as 

F~2 - ~4 1[1 + ~(~)]FH 
+ e(t)F ~ + g(~)F} = l(~), (2) 

where the large parameter is now k4. We assume 
further that k4 is positive. 

Equation (2) describes specifically the problem1
•
2 

of a very thin pressurized toroidal shell of uniform 
wall thickness if 

d(t) = 2~ (3 + ~/a)(1 - t2
) - t, 

e(t) = ia (4 + 3Ua)(1 - ~2), (3) 

-(1 - t2
) 

get) = 2a(a +~) , 

-1 ~ ~1 ~ t ~ t2 ~ 1. 
'In this case, Eq. (1) is closely related to the homogeneous 

problem discussed by R. W. McKelvey, Trans. Am. Math. 
Soc. 79, 103 (1955). 
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FIG. 1. Homogeneous limit solutions. 

3.0 

Here Eo is a reference strain and is thus small by 
definition, while a > 1 is the torus opening ratio. 
Equation (3) becomes modified2 if the shell has~ a 
noncircular meridional cross section, nonuniform wall 
thickness, etc., and we are not going to assume here 
that our problem obeys Eq. (3) as given above. We 
assume, however, that we can conveniently write 

d(t) = t d.r; ... ; let) = t l.r, (4) 
o 0 

and that these series converge rapidly enough, in a 
sense that will become clear later, in the t-range to 
be considered. Equations (4) mean, in particular, 
that we will have solved Eq. (2) once we have ob­
tained a set n = 0, I, 2 '" of suitable solutionsT of 
the equation 

Ft
2 

- ~ {(I + ~d(t)]FH + e(~)F~ + g(t)F} = t. (5) 

Inspection of Eq. (5) indicates two ranges of 
general behavior of the solution F. In an "outer" 
range, I~I sufficiently large, the "convergency condi­
tion" FW ~ t-2 should describe a possible solution. 
(Below, by making this condition precise, we will 
define a unique convergent solution.) On the other 
hand, in an "inner" range, ~ ~ 0, the terms in the 
{ I bracket, and in particular the differential terms, 
must become important (certainly if n = ° or n = 1). 
In order to inspect more closely this inner range, we 
make the "stretching" transformation 

kt = x; (6) 

1 In most applications only one or two solutions will be 
required. For example, if l(~) has no zero, F = lG transforms 
Eq. (2) into 

GI!- - I··· lG ... ) /k4l = 1. 
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which transforms Eq. (5) with Eq. (4) into 

IX2 - I" 

-~ ~ (~r {Xd,t" + e.t' + ~ g,t} = XA, (7) 

where the prime (') indicates differentiation with 
respect to x. 

In Eq. (7) the limit process k ~ ex> can be made 
without difficulty. Thus arises the "limit form" 

fox 2 
- t~' = x". (7a) 

Applying the inverse of the transformation Eq. (6) 
to Eq. (7a) we obtain the limit form of Eq~ (5) 

(7b) 

A solution fo of Eq. (7a), respectively a solution Fo 

of Eq. (7b), we henceforth refer to as a "limit 
solution. " 

Equation (7a) is a special form of the nonhomo­
geneous Bessel equation. The here relevant proper­
ties of to are discussed in the next section; 
subsequently, the solution t of Eq. (7) is written 
as a formal expansion in terms of descending powers 
of k, with 10 as the starting term. 

III. LIMIT SOLUTION 

Trying to solve Eq. (7a) by means of a power 
series in x, one is led to consider the functions 
t",(m = 0, 1, 2 ... ) that are defined by 

t", == X",( 1 + (m + 3);m + 4) + ... ) , 

TABLE I. Functions hell, h(2), To, T" and first derivatives. 

x I\i)lh(l) .105 (i)Jh(1), '105 :~i)Jh(2) (})Jh(2), TO T' 
0 Tl T' 1 

0.0 147 934 100 000 1.4793 1. 0000 1.31103 0.00000 0.00000 0.59907 
0.1 .137 935 99 953 1.5794 1.0005 1. 30604 -0.099564 0.059741 0.59409 
0.2 127 952 99 645 1.6800 1.0043 1.29120 -0.19654 0.11849 0.57931 
0.3 118 021 98 871 1.7805 1.0153 1.26690 -0.28844 0.17529 0.55526 
0.4 108 198 97 482 1.8830 1.0380 1. 23375 -0.37303 0.22926 0.52279 
0.5 98 549 95 387 1.9886 1.0774 1.19260 -0.44838 0.27961 0.48301 
0.6 89 146 92 550 2.0992 1.1395 1. 14444 -0.51296 0.32566 0.43724 
0.7 80 063 88 979 2. 2175 1. 2310 1. 09041 -0.56570· 0.36691 0.38697 
0.8 71 373 84 727 2.3467 1.3596 1. 03172 -0.60598 0.40296 0.33372 
0.9 63 138 79 877 2.4910 1.5347 0.96963 -0.63367 0.43360 0.27905 
1.0 55 ~13 74 538 2.6555 1.7672 U.IlUD'!!1 -U.64~07 0.45877 0.22444 
1.1 48 242 68 838 2.8468 2.0708 0.84020 -0.65288 0.47854 0.17123 
1.2 41 654 62 909 3.0726 2.4625 0,77517 -0.64613 0.49310 0.12061 
1.3 35 663 56 886 3.3429 2.9639 0,71129 -0.63009 0.50278 0.07353 
1.4 30 275 50 895 3.6700 3.6030 O. 64941 -0.60622 0.50795 0.03075 
1.5 25 480 45 054 4.0693 4.4164 0,59025 -0.57604 0.50909 -0.00722 
1.6 21 256 39 460 4.5607 5.4527 O. 53436 -0.54112 0.50668 -0.04010 
1.7 17 577 34 194 5.1694 6.7763 0.48214 -0.50293 0.50124 -0.06781 
1.8 14 405 29 317 5.9284 8.4740 0.43384 -0.46288 0.49329 -0.09044 
1.9 11 699 24 870 6.8806 10.663 0.38958 -0.42219 0.48331 -0.10826 
~. U ~415.4 ~U tHo 

~:~~~~ 
13.oU4 ~:~~;f~ =~:;~~~~ ~::~~I~ -U.l'<:103 

2.1 7508.6 17 337 17.214 -0.13099 
2.2 5933.1 14 247 11.564 22.097 O. 28073 -0.30591 0.44570 -0.13685 
2.3 4644.9 11 585 14.083 28.572 0.25189 -0.27132 0.43185 -0.13972 
2.4 3602.7 9322.2 17.351 37.226 0.22638 -0.23948 0.41784 -0.14012 
2.5 2768.3 7422.7 21.628 48.886 0.20390 -0.21056 0.40389 -0.13853 
2.6 2107.3 5848.7 27.267 64.723 0.18417 -0.18460 0.39019 -0.13540 
2.7 1589.1 4560.5 34.767 86.414 0.16688 -0.16153 0.37685 -0.13112 
2.8 1187.0 3519.0 44.824 116.37 O. 15177 -0.14123 0.36399 -0.12605 
2.9 878.27 2687.3 58.431 158.09 0.13855 -0.12349 0.35166 -0.12047 
3.0 64;S.69 ~030.9 77.u03 <::16.70 ~:~t~~~ -0.10810 0.33990 -0.11463 
3.1 467.28 1519.0 102.58 299.72 -0.09483 0.32873 -0.10870 
3.2 335.98 1124.4 138.13 418.36 0.10796 -0.08342 0.31816 -0.10284 
3.3 239.28 823.72 187.94 589.37 0.10012 -0.07364 0.30816 -0.09714 
3.4 168.77 597.25 258.58 838.04 0.09319 -0.06528 0.29872 -0.09168 
3.5 117.90 428.60 359.44 1202.8 0.08703 -0.05812 0.28982 -0.08651 
3.6 81. 571 304.41 504.95 1742.7 0.08153 -0.05200 0.28141 -0.08164 
3.7 55.894 214.00 716.82 2549.0 0.07660 -0.04675 0.27348 -0.07709 
3.8 37.930 148.90 1028.3 3763.9 0.07216 -0.04223 0.26598 -0.07286 
3.9 25.491 102.54 1490.5 5610.9 0.06813 -0.03832 0."25890 -0.06893 
4.0 16. 966 69.897 <::18;s.1 8444.8 u.u6448 -0.034~3 0.~5219 -0.06529 
4.1 11.183 47.159 3230.9 12 832 0.06113 -0.03197 0.24583 -0.06192 
4.2 7.2996 31.494 4831.3 19 688 0.05807 -0.02938 0.23979 -0.05881 
4.3 4.7185 20.818 7299.4 30 500 0.05525 -0.02709 0.23406 -0.05592 
4.4 3.0205 13.621 11 143 47 707 0.05264 -0.02506 0.22860 -0.05325 
4.5 1.9147 8.8217 17 186 75 347 0.05023 -0.02325 0.22340 -0.05077 
4.6 1. 2019 5.6553 26 780 120 160 0.04799 -0.02162 0.21844 -0.04847 
4.7 0.74717 3.5887 42 160 193 499 0.04590 -0.02016 0.21370 -0.04632 
4.8 0.45993 2.2542 67 058 314 644 0.04395 -0.01884 0: 20917 -0.04432 
4.9 0.28036 1.4016 107 758 516 641 0.04213 -0.01764 0.20483 -0.04246 
b.O 0.169~3 0.86~61 174 ~39 856 6~9 U.0404<! -0.01654 0.~OU68 -0.04071 
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~ m+4" aJl'-l 

== ~ a..x ; a. = (m + 41' _ l)(m + 41')' (8) 

so that 
t",x2 

- t;.: = - m(m - 1)x"'-2. (8a) 

Equation (Sa) shows in particular that to and tl 
are homogeneous solutions of Eq. (7a). These are 
shown in Fig. 1. As to is symmetric, tl antisymmetric, 
they form a complete set of solutions. Their 
Wronskian is W ~ 1. 

Often, in particular in boundary layer problems, 
it is more convenient to work with solutions which 
converge in the manner of the Hankel functions 
H;l) and H~2l. We define corresponding solutions by 

(1) 2to tl 
h ~ (-1/4)! - (1/4)! 

[ - !'5/4H(1)(ix2) 'f x > oJ, =X ~ t 2" 1 (9) 

and 
(10) 

Their asymptotic behavior is given by 

h(l) '" 6 (1 -~ + .. . )e-Z
'
/2 as x --t + <Xl , 

(1I"X) 16x 

,......, 2(~)t(1 + ~ + ... )e3
•
/2 as x --t - <Xl • 

1I"X 16x 
(11) 

The two functions h (l) and h (2) are also shown in 
1.4 

FIG. 2. Nonhomogeneous limit solutions. 

TABLE II. T ft functions: formulas. 

To' To 

Tl = Tl 

T a ' 

T3 = x 

2 To + x 2 
T4 • 

T • 6 Tl + x3 
5 

T = 6 
12 + ,,4 

T7 • 20 " + x5 

+ 30 " 
2 + x 6 

T = 60 To 8 

252 Tl + 42 x3 + x 7 
T • 

9 

T IO ' 672 + 56,,4 + x 8 

Tn' 1440 x + 72 ,,5 + x 9 

T12 • 5400 TO + 2700,,2 + 90 x 6 + ,,10 

+ 4620,,3 + 110 x 7 + ,,11 
TI3 • 27 720 Tl 

88 704 + 7392 x 
4 + 132,,8 + ,,12 

TI4 = 

T 15 ' 224 640" + 11 232 x 5 + 156 x9 + ,,13 

Fig. 1; they form another complete set of homo­
geneous solutions of Eq. (7a). A brief tabulation is 
given in Table I (see Appendix B). 

In discussing next the nonhomogeneous solution 
fo of Eq. (7a), we are no longer confined, as we might 
be in a discussion of Eq. (5), to a given coordinate 
range ~I ::; ~ ::; ~2' and can hence state the con­
vergency condition in a precise form. Denoting by T. 
a convergent limit solution fo for a given number n, 
we have 

T"x
2 

- T~' = x" (12) 

and write the convergency condition as 

Tn rv x .. - 2 as X --t ± ro. (12a) 

As no homogeneous solution obeys a corresponding 
convergency condition, there can be at most one 
function T .. for each n. 

From Eqs. (12) and (12a) immediately 

Ta = x; 
(13) 

TnH = x .. +2 + (n + l)(n + 2)T ... 

The functions T" are thus readily written algebraic 
functions of x if n = 2 (mod 4) or n = 3 (mod 4), 
and are readily expressed by To if n = 0 (mod 4) 
and by TI if n = 1 (mod 4). It remains to discuss 
To and T I • 

From Eq. (Sa) and from considerations of sym­
metry it follows that To and T I, assuming these two 
functions to exist, can be written as 

To = coto - 1t2; Tl = Cltl - ltg, (14) 

with constants Co and Cl still to be detennined. To 
answer the question of existence, and to determine 
Co and CI , requires knowledge of the asymptotic 
behavior of the functions t2 and t:t [that of to and tl 
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FIG. 3. Normalized functions T2,.(X)/T2n(O). 

can be read from Eqs. (9) and (11)]. This knowledge 
is provided by the theory of Lommel functions.8 The 
two constants arell 

(1/4)! i 
Co = (-1/4)1 'If = 1.31103 ... 

(14a) 
'If 

Cl = 4- = 0.59907 .... 
Co 

The functions To and T, are tabulated in Table 1. 
They are shown graphically in Fig. 2, together with 
the functions toward which they converge as Ixl~ (Xl • 

For many practical purposes, convergency is com­
plete if Ixl > 4. 

The first 16T .. functions are written out explicitly 
in Table II. Figure 3 illustrates. the behavior of T .. 
as a function of n. Shown are normalized functions 
T2 ,. and also the asymptotic curve of T",. 

Formal development in an asymptotic series with 
descending powers of x leads to 

T .. = x .. -{ 1 + (n - 2~\n - 3) 

X (1 + (n - 6~T - 7) (1 + ... ») 1 (15) 

Having described the limit solution in terms of the 
coordinate x, we now return to the coordinate ~. 

Figure 4 illustrates the convergent solution Fo of 
Eq. (7b) in the case that n = 0, i.e., Fo = k2To(k~). 

8 See Appendix A. The functions To and T, are not them­
selves Lommel functions. They were first defined and tabulated 
by Sanders and Liepins (Ref. 5) who denote them by T 1 and T 2. 

t Equation (14a) follows directly from Eq. (14) if one 
requires that, because of Eq. (12a), the "th term in each 
power series Eq. (14) converges, as" -> 00, towards the nega­
tive geometric mean of its two neighboring terms. 

I 

-1. a -0.5 0.5 1.0 

E-

FIG. 4. Limit solution Fo = k2To(kE). 

In the outer range this solution converges toward 
the function lie which is independent of k. The 
inner range contracts as k increases; simultaneously, 
the central value Fo(O) = cOk

2 increases. 
Another illustration, Fig. 5, refers to the equation 

FO~2 - ~4 Fo•H = (1 - ~2)~2. (16) 

In a problem of this type, one is tempted to divide 
by ~2 and, in the present case, to write F 0 ~ 1 _ ~2. 
Figure 5 compares this approximation with the exact 

0.5 

-0.5 

k:: 2 

0.5 
,-~ 

FIG. 5. Solutions of Eq. (16) for several values of k. 
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convergent solution 

Fo = 1 - ~2 - :2 To(k~). (16a) 

Note that, for all values of k, the exact solution Fo 
has zero curvature at the transition point ~ = O. 

Insofar as Eq. (16) is a representative problem of 
membrane shell theory, the range of definition might 
be -1 ~ ~ ~ 1, and boundary conditions Fo(±I) =0 
might be given. In order to fulfill such (or similar) 
boundary conditions, a suitable homogeneous solu­
tion has to be added to the Fo curves of Fig. 5. Note 
that to the ~-range of Fig. 5 corresponds the range 
-k ~ x ~ k of Fig. 1, and that the steepness of the 
homogeneous solutions at the end points x = ±k 
increases rapidly as k is increased. Consequently, 
the practical effect of a homogeneous correction will 
increasingly be confined to close neighborhoods of 
the end points. 

IV. FORMAL SOLUTION 

The limit solution Fo of Eq. (7b) is the solution 
of Eq. (5) in the special case that the parameter 
functions, d(~), em and g(~), are identically zero. 
We investigate now the modifications to the solution 
of Eq. (5) which arise from nonzero parameter 
functions. 

We consider first the outer range, writing the 
solution of Eq. (5) in the form 

1 1 
F = Fo + k4 F1 + k8 F2 + ... (17) 

We do not, however, imply by this formulation that 
F 0 be independent of k. Rather, as before, we under­
stand Fo to be a limit solution, and, furthermore, we 
confine our attention to the case that Fo is conver­
gent. From Eqs. (6) and (15) thus 

Fo""' [1 + (n - ~k~t - 3) + '" ]r-2
• (17a) 

A significant observation can be read from Eqs. 
(17a) and (18): the corrective term F1 , apart from 
having the factor 11k', will itself become small com­
pared with Fo as I~I-+ IX) if the parameter functions 
are such that, for the [ ] bracket in Eq. (18), 

[ ... ]~-3 -+ 0 for I~I -+ IX). (18a) 

In order to discuss the inner range, we abbreviate 
our notation by defining 

M(f) == fx 2 
- f", 

N(f) == t (~){ul.f" + e.j' + ~ g,f} , 

(19) 

so that Eq. (7) now reads 

M(f) - ~ N(f) = x". 

Writing, in correspondence with Eq. (17) 

1 1 
f = fo + k f1 + kd2 + (20) 

and again letting fo be the convergent limit solution 
(Le., fo == Tn), we find first 

M(f1) = N(T .. ) or f1 = M-1N(T .. ) (21) 

and, generally, 

(22) 

The task of determining the sequence of corrective 
functions f I' is thus equivalent to the task of suc­
cessively inverting the operator M. This task is 
performed in the next section. 

Continuing here the discussion of the formal aspect 
of the solution, we note that, as the parameter k 
appears explicitly in N(t), Eq. (19), each of the 
corrections f I' is again a series in descending powers 
of k. Combining terms with equal powers of k, we 
write the solution F of Eq. (5) in the following final 
form: 

Inserting Eqs. (17), (17a) into Eq. (5), multiplying F(~) == k
2

-
n
f(x) = WT .. + k[(do) + (eo)] 

by k', and making the transition k ---? IX) , we obtain + [(d) + ( ) + ( ) + (d2
) + (d ) + / 2)] 1 e1 go 0 oeo ,eo 

1 1 
k' F1 = kx3 [en - 2)«n - 3)d(~) + e(~» 

+ ~g(mr-2. (18) 

By continuing this process we could obtain F2 , then 
F 3 , and so on. 

Equation (18) is written such that Eqs. (17a) 
and (18) have the same factor t"-2 on the right, and 
that the two k factors, 11k' on the left, 11k on the 
right, explain an apparent discrepancy between Eqs. 
(5) and (7): according to the former, the large 
parameter is k' while, on transforming to the x 
coordinate, k rather than k' becomes the parameter. 

+ k-1[(d2) + (e2) + (gl) + (dodl) + (dOe1) + (do go) 

+ (dleo) + (eOel) + (eogo) + (d~) + (d~eo) 
+ (doe~) + (e~)] + k-2

[ ••• J + .. ·}k-". (23) 

Each term within angular brackets in Eq. (23) repre­
sents the influence of the parameter coefficient, or the 
product of parameter coefficients, that is written 
within the brackets. In each term, this influence is a 
function which, for a given exponent n, is a function 
of x only, and which thus can be determined once and 
for all. These influence functions we will denote by 
Greek letters. A few illustrative examples follow: 



                                                                                                                                    

124 P. F. JORDAN AND P. E. SHELLEY 

TABLE III. Survey and convergency of influence functions. 
k-Factor Dominant power 
in Eq.{23) Function Rank", of x as Ixl- 00 

I' T 
n 

0 I 

I 
0Q' £0 I x· 3 

K 

61 , £1' YO I x 
., 

I - - - - - - - - -k2" ~~>.~o'(M~> 2 x· 6 

k2- n .. • xn- 2 

°2, £2" Y 1 
I x· 1 

f- - -. - - - - - - -
1 

~O'I)'~O'V'~OYo).~, 'o).~o'i> '~OYo> 2 x -. 
k3' f------- - - -

~~).~~'O>.~o'~·~~ 3 x ·9 

(d.) == d.· 0.; 

(e.) == e.·E,; (g.) == g.·'Y.i (23a) 

(o.e,,) = M-l(x'+le~' + xPo~). 
As these examples show, angular brackets will be 
used to distinguish higher-rank influence functions 
from products. If the number n has to be indicated, 
this will be done by an additional suffix (e.g., 0,.0 == 
0, for n = 0). 

Table III refers to the discussion above, in con­
nection with Eqs. (18) and (I8a), of the convergency 
behavior of the corrective functions Fpo Listed in 
Table III is the dominant power of x for each one 
of the terms that is written explicitly in Eq. (23). 
Also indicated is the rank Jl., that is, the function II' 
from which each influence function originates. 

V. INFLUENCE FUNCTIONS 

Equation (23) reduces the task of solving Eq. (5) 
to the task of determining a set of influence func­
tions. By itself, of course, this achieves little; formal 
developments are readily written, but to determine 
analytically the functions that appear in such devel­
opments usually remains a rather formidable propo­
sition. The key observation of the present paper is 
that, in the present case, this task is performed with 
relative ease. 

An illustrative example follows. Owing to 

M(n) == x2T~ - (T~')' = -2xTo, 
we have 

'Y1.0 = M-1(xTo) = -tn. 
That is, the influence function 'Y1 .0 is a function that, 
essentially, has already been tabulated. 

This statement can be generalized to a large 
extent. In order to calculate first 11 according to 
Eq. (21), we reduce N(T .. ) by means of Table II 
and Eq. (12) to a sum of members of the following 
family of functions: 

(p = 0, 1,2, ... ). 

To these the inverse operator M- 1 has to be applied. 
As M-1(x") = T" can again be reduced to members 
of the same family, it remains to try to perform a 
similar inversion with the other members of the 
family. To the extent that this can be achieved, we 
can then proceed to form N(f1), again in terms of the 
same family of functions, find /2 according to Eq. 
(22), and so on. 

In most cases, the inversion is readily performed 
by starting from the formulas 

M(x"T .. ) = x"+" - p(p - 1)x"-2T .. - 2p:J!-lT~, 

M(x"T~) = (n + 2p)X"+"-1 
(24) 

- 2(P + l)x,,+IT .. - p(p - I)x"-2T~, 

eliminating on the right either Tn or T~, and applying 
the inverse operator M-1

• Results of this procedure 
are listed in Table IV. Where the procedure leads to 
difficulties, this is indicated by the appearance of 
two new functions, Uo and U1 , in Table IV. These 
functions will be discussed later. 

Table V lists in detail the formulas that result 
from this procedure for the more important in­
fluence functions, namely, for those which have a 
(combined) factor e, kO or k-1 in Eq. (23). Table V 
is confined to n = ° and n = 1 because the two in­
fluence functions for n = 2 which would qualify 
(that is, 00.2 and Eo .2) are both identically zero. 
Note that generally 

0,.2 = 0 •. 3 = £ •• 2 = 0, (25a) 
E •. 3 = 'Y •. 2 = 'Y.-1.3 = T., 

and for n ~ 4, from Eq. (13), 

0 .... = (n - 2)(n - 3)[T .. +.-a + 0 .... -4], 

E .... = (n - 2)[T .. +.-a + (n - 3)£ .... -4]' (25b) 

'Y .... = T .. +P-2 + (n - 2)(n - 3)')' .... -40 

Table VI refers to the asymptotic behavior of the 
influence functions that are listed in Table V but is 
valid for all n. Given are the first two terms of the 
respective asymptotic series as read from F l , Eq. 
(18), and F 2 • Tables VII, VIII, and IX give numeri­
cal values; these are plotted in Figs. 6(a), (b). 

The analytical presentation, Table V, of the in­
fluence functions would become increasingly tedious 
if it would have to be extended to higher ranks of 
influence functions; in this case, numerical inte­
gration of Eq. (22) would become preferable. In fact, 
numerical integration had to be used to determine 
the functions 

Un = M- 1(T .. ) (n = 0, 1), 
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TABLE IV. Results of applying the operator M-I. 

f M- l (f) -

(n = 0) 1 To T' 0 Tl Uo 

To a a 0 0 1 

2x TO 0 0 -1 0 0 

2 
4x To 0 2 -x 0 0 

6XS T 0 x -x 2 
3 0 

0 

4 
ex To 9/2 ax

2
/2 

3 -x 0 3 

IOx5 T 
0 6x 2x3 _(6+x4 ) 0 0 

12x
6 

To 15x2 /2 30 + 5x4 /2 -(15/2 + x 4 ) x 0 0 

14x 
7 

TO 9x3 (10 + 3x4) x -(lO+x4)x 2 84 0 

2 T~ 0 -x 0 1 0 

4x To 1 -x 2 0 0 -2 

6x
2 

To x _xS S 0 0 

8x
3 

To x2 - (4 + x4 ) 3x 0 0 

lOx4 T' 0 x3 - (10/3 + x 4 ) x lOx2 /3 -4 0 

12x
5 

To x4 - 39/s _ (45/8 + x4 ) x 2 15x3/4 0 -4514 

14x
6 

To (x4 - 26/5) x - (42/5 + x 4) x3 
21 (6 + "h/5 0 0 

(n = 1) 
1 TI TO 

1 To U I 

TI 0 0 0 0 1 

2x Tl 0 0 -1 1 0 

2 
4x Tl 0 3 -x 0 0 

3 
6x Tl 4 x _x2 0 0 

4 
8x TI 11x/2 3x2 /2 _x3 0 3 

IOx
5 

T 1 7x2 2x3 - (6 + x4 ) 20 0 

12x
6 

T I 17x3 /2 147/2 + 5x4 /2 -(15/2+x4)x 0 0 

14x7Tl 160 + lOx4 (IO + 3x4) x - (10 + x 4 ) x 2 
0 0 

2 T'l 1 -x 0 0 0 

4x T; x -x 2 0 0 -2 

6x
2 T~ x2 _xS 3 -1 0 

8x3 T' 
1 

x3 _(S+x4 ) 3x 0 0 

10x4 T' 
1 

- 4/3 + x4 - (l0/3 + llh x lOx2 /3 0 0 

12x5 T' 
1 

(- 5/8 + x4 ) x - (45/8 + x4 ) x2 lSx3 /4 0 -45/4 

14x6 T' 
1 

(sIs + x 4) x2 - (42/5 + x4 ) xS 21 (6 + x4)/S -24 0 
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TABLE V. Influence functions: formulas. 
I A B C D E F G K L M N 

6x~ °0 -1 3 -1 

2x2 ~o 1 -1 

16x 01 -2 3 

4x E 1 -1 

2x 1'0 1 1 

192X(0~) 16 10 16 -4 -15 

12x(60• 0> 1 -4 1 -1 3 

BX~~) -2 2 -1 

10 ° 2 
-2 -1 -3 

12 '2 2 3 

41'1 -1 C> . 
4BO~001) 79 37 30 96 -15 15 

c 

24(°0 '1> -3 1 -4 -1 

12{OO1'o) -3 1 1 

96{O1'0) -16 6 -6 -24 -9 9 

8('0'1) 1 1 -1 

4('01'0) -1 1 -1 1 

3456{O~> -173 -79 -90 -192 65 9 -1 -45 

384{Og,o> 4B -16 -26 -6 64 • -1 15 -15 16 

48{Oo' ~) -1 8 -1 2 -4 -6 6 -1 

48~~) 4 -6 3 -3 

6x ° 0 -1 -1 

2x EO 1 

16 °1 
-2 3 

4 '1 -1 -. 
21'0 1 1 c 

192(o~> 10 -1 -15 

12(°0.0) 1 1 3 

8{<~) -2 -1 

Explanations! 

Each of the functions. I~ listed on the left margin has the form: 

1= aA+ bB + cC + ••• + nN 

The coefficients a, b. c, . . . n are the integer numbers that are listed in the body of the table. 
All coefficients not listed are zero. The functions A, B, C, ..• N are: 

A = (1 - ,,2 To) x F =(2/3)[ Ax4 + 6X] N = 2x (Uo - x UbI - 3 M 

B=(I-xT
1
)x 

C = (2 + ,,3 TO) x 

D = (1 + ,,2 Tp x 

E = 2 Tb 

G =(8/3)[ Bx· + 2x 1 
K =(8/3)[ Cx4 + 36x] 

L = 2 Uo" - A 

M=2U1 -B 

Example: 41' 1 = -2 TO 
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which do not seem to be expressible in terms of T 
functions. Further functions V .. , W.. ... would 
appear if Table V would be extended to higher-rank 
influence functions: 

V .. = M- 1(U.), 

w .. = M- 1(V .. ) = M-2(U .. ) = M-3(T .. ). 

The computation of these functions is described in 
Appendix B; numerical values are given in TableX. 

VI. DISCUSSION 

Equation (23), in connection with the graphs of 
the Tn functions, Figs. 2 and 3, and of the influence 

functions, Fig. 6, and with Eqs. (25a) , (25b) , pro­
vides a direct insight into the qualitative behavior 
of the solutions of Eq. (5). To what degree of accu­
racy this limited number of influence functions deter­
mines a numerical solution to a given problem. de­
pends upon the parameters involved, that is, the 
numbers k and n and the parameter coefficients d., 
e., and g •• 

In Fig. 6, the influence functions are grouped 
according to the k factor which they have in Eq. 
(23). The influence functions are odd if the power 
of k is odd, and even when this power is even. 

To illustrate the application, assume that all 
parameter coefficients are zero except either do, eo, 

TABLE VI. Influence functions: leading ter1llS of asymptotic developments. 

-4 -8 
x x 

.{ °0 (n-2) (n-3) 2 (n - 2) (n - 3) (n - 6)2 
1 

-n=T 
(n - 2) 2 (n - 2) (n - 4) (n - 6) x EO 

0 1 (n - 2) (n - 3) 2(n-2)(n-3) [n2 - lln+ 3t] 

E1 (n - 2) 2 (n - 2) [n2 - 9 n + 19 ] 

Yo 1 2 [n
2 

- 7n+ 13J 
1 

n 
(o~ x 0 (n-2) (n-3) (n-5) (n-6) 

(oOE~ 0 (n-2) (n-5) (2n-9) 

(E~) 0 (n-2)(n-5) 

O2 (n - 2)(n - 3) 2(n-2) (n-3) [n2 -tOn + 27J 

E2 (n - 2) 2(n-2) (n-3) (n-5) 

Y1 1 2(n-3)2 

(ooot> 0 2 (n - 2) (n - 3) (n - 5)2 

~OE1) 0 (n - 2) (n - 5) (2 n - 7) 

(ooY~ 0 2 [n2 -7n+13] 

t 
(Ot EW 0 2(n-2) [n2 -9n+21] n+T x 

(EOEt) 0 (n - 2) (2 n - 9) 

(EO yo) 0 2 (n - 3) 

(0 g) 0 0 

(o5€~ 0 0 

(0 0 E5) 0 0 

(Eg) 0 0 
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or go. Equation (7) reduces respectively to 

tx2 
- 1"(1 + ~o x) = x", (i) 

tx2 
- l' ~ - t" k 

t(X2 - k~) - t" 

and the respective solutions are 

x" , 

x" , 

(ii) 

(iii) 

(26) 

~o 50 + (~Or(5~) + (~Or(5~) + 

t = T .. + ~ Eo + (~y(E~) + (~r(E~) + .,. , (26a) 

go (gO)2 (gO)3 e Un + e V .. + e w .. + 
For cases (i) and (ii) , the first three ranks of in­
fluence functions are shown in Fig. 6(a) (n = 0); 

TABLE VII. Influence functions: numerical values (n = 0). 

x 60 '0 61 '1 Yo <6g> <6 0 '0> ~g> 62 '2 Yl 

0.0 0.0000 0.0000 0.0840 -0.4453 I. 3906 0.0483 0.2786 -0.2226 0.0000 0.0000 0.0000 
0.1 -0.0079 -0.0354 0.0840 -0.4453 I. 3840 0.0483 0.2790 -0.2209 0.0200 -0.0333 0.0498 
0.2 -0.0149 -0.0699 0.0841 -0.4452 I. 3646 0.0482 0.2801 -0.2156 0.0400 -0.0661 0.0983 
0.3 -0.0200 -0.1024 0.0847 -0.4449 I. 3328 0.0477 0.2815 -0.2071 0.0601 -0.0999 0.1442 
0.4 -0.0224 -0.1321 0.0861 -0.4442 I. 2896 0.0465 0.2827 -0.1957 0.0806 -0.1330 0.1865 
0.5 -0.0217 -0.1583 0.0890 -0.4426 1.2362 0.0441 0.2830 -0.1817 0.1016 -0.1657 0.2242 
0.6 -0.0176 -0.1805 0.0938 -0.4400 I. 1739 0.0400 0.2817 -0.1658 0.1239 -0.1977 0.2565 
0.7 -0.0100 -0.1982 0.1011 -0.4358 1.1044 0.0341 0.2782 -0.1485 0.1478 -0.2285 0.2829 
0.8 0.0007 -0.2112 0.1111 -0.4298 I. 0294 0.0260 0.2719 -0.1304 0.1741 -0.2577 0.3030 
0.9 0.0142 -0.2195 0.1240 -0.4217 0.9507 0.0160 0.2624 -0.1121 0.2031 -0.2846 0.3168 
1.0 0.0297 -0.2233 0.1397 -0.4114 0.8700 0.0043 0.2494 -0.0940 0.2354 -0.3088 0.3245 
1.1 0.'0464 -0.2228 0.1576 -0.3986 0.7890 -0.0086 0.2330 -0.0768 0. 2710 -0.3295 0.3264 
1.2 0.0636 -0.2186 0.1772 -0.3836 0.7090 -0.0220 0.2136 -0.0607 0.3096 -0.3463 0.3230 
1.3 0.0802 -0.2109 0.1977 -0.3663 0.6315 -0.0352 0.1916 -0.0460 0.3506 -0.3588 0.3150 
1.4 0.0956 -0.2006 0.2182 -0.3470 0.5576 -0.0473 0.1677 -0.0331 0.3930 -0.3668 0.3031 
1.5 0.1090 -0.1881 0.2375 -0.3260 0.4880 -0.0576 0.1426 -0.0219 0.4357 -0:3700 0.2880 
1.6 0.1200 -0.1742 0.2549 -0.3038 0.4235 -0.0655 0.1172 -0.0126 0.4770 -0.3687 0.2706 
1.7 0.1282 -0.1592 0.2693 -0.2806 0.3645 -0.0706 0.0923 -0.0050 0.5156 -0.3629 0.2515 
1.8 0.1335 -0.1438 0.2802 -0.2570 0.3112 -0.0727 0.0686 0.0009 0.5497 -0.3531 0.2314 
1.9 0.1357 -0.1284 0.2870 -0.2334 0.2636 -0.0718 O. 0469 0.0053 0.5779 -0.3398 0.2111 
2.0 0.1352 -0.1135 0.2896 -0.2102 0.2216 -0.0682 O. 0275 0.0084 0.5992 -0.3235 0.1910 
2.1 0.1321 -0.0993 0.2878 -0.1878 0.1850 -0.0622 0.0109 0.0103 0.6127 -0.3048 0.1715 
2.2 0.1268 -0.0860 0.2820 -0.1664 0.1534 -0.0543 -0.0029 0.0113 0.6180 -0.2845 0.1530 
2.3 0.1198 -0.0738 0.2724 -0.1464 0.1265 -0.0453 -0.0138 0.0116 0.6150 -0.2631 0.1357 -
2.4 0.1115 -0.0627 0.2597 -0.1278 0.1037 -0.0356 -0. 0219 0.0114 0.6041 -0.2413 0.1197 
2.5 0.1023 -0.0529 0.2444 -0.1109 0.0846 -0.0259 -0.0274 0.0107 0.5860 -0.2196 0.1053 
2.6 0.0927 -0.0443 0.2273 -0.0956 0.0687 -0.0167 -0.0308 0.0098 0.5617 -0.1985 0.0923 
2.7 0.0829 -0.0369 0.2089 -0.0820 0.0557 -0.0083 -0.0322 0.0088 0.5323 -0.1782 0.0808 
2.8 0.0734 -0.0305 0.1900 -0.0700 0.0450 -0.0010 -0. 0321 0.0077 0.4991 -0.1592 0.0706 
2.9 0.0642 -0.0251 0.1711 -0.0595 0.0364 0.0049 -0. 0309 0.0066 0.4634 -0.1416 0.0617 
3.0 0.0557 -0.0205 0.1527 -0.0504 0.0294 0.0096 -0.0288 0.0056 0.4263 -0. 1255 0.0541 
3.1 0.0479 -0.0168 0.1351 -0.0427 0.0239 0.0129 -0. 0262 0.0046 0.3889 -0.1110 0.0474 
3.2 0.0409 -0.0137 0.1187 -0.0361 0.0194 0.0150 -0.0234 0.0038 0.3523 -0.0980 0.0417 
3.3 0.·0346 -0.0111 0.1037 -0.0305 0.0159 0.0160 -0. 0204 0.0031 0.3171 -0.0865 0.0368 
3.4 0.0292 -0.0091 0.0901 -0.0258 0.0131 0.0162 -0.0175 0.0025 0.2840 -0.0764 0.0326 
3.5 0.0245 -0.0074 0.0780 -0.0219 0.0108 0.0158 -0. 0148 0.0020 0.2533 -0.0676 0.0291 
3.6 0.0205 -0.0060 O. 0673 -0.0187 0.0091 0.0148 -0.0123 0.0015 0.2254 -0.0600 0.0260 
3.7 0.0172 -0.0050 0.0580 -0.0160 0.0076 0.0136 -0.0102 0.0012 0.2001 -0.0534 0.0234 
3.8 0.0143 -0.0041 0.0499 -0.0137 0.0065 0.0121 -0. 0083 O. 0009 0.1777 -0.0477 0.0211 
3.9 0.0120 -0.0034 0.0431 -0.0119 0.0056 0.0106 -0. 0066 0.0007 0.1579 -0.0428 0.0192 
4.0 0.0100 -0.0029 0.0372 -0.0103 0.0049 0.0091 -0. 0053 0.0005 0.1405 -0.0385 0.0175 
4.1 0.0084 -0.0024 0.0322 -0.0090 0.0043 0.0077 -0. 0042 0.0004 0.1254 -0.0349 0.0160 
4.2 0.0071 -0.0020 0.0281 -0.0080 0.0038 0.0064 -0.0033 0.0003 0.1123 -0.0317 0.0147 
4.3 0.0060 -0.0018 0.0245 -0.0071 0.0033 0.0053 -0.0026 0.0002 0.1009 -0.0290 0.0135 
4.4 O. 0052 -0.0015 0.0215 -0.0063 0.0030 0.0043 -0. 0020 0.0002 0.0911 -0.0266 0.0125 
4.5 0.0044 -0.0013 0.0190 -0.0056 O. 0027 0.0035 -0. 0016 O. 0001 0.0827 -0.0245 0.0116 
4.6 0.0038 -0.0011 0.0169 -0.0051 0.0024 0.0028 -0. 0012 O. 0001 O. 0753 -0.0226 0.0108 
4.7 0.0033 -0. 0010 0.0151 -0.0046 O. 0022 0.0023 -0. 0009 0.0001 0.0690 -0.0210 0.0101 
4.8 0.0029 -0.0009 0.0135 -0.0042 0.0020 0.0018 -0. 0007 0.0001 0.0634 -0.0195 0.0094 
4.9 0.0026 -0.0008 0.0122 -0.0038 0.0018 0.0015 -0. 0006 0.0001 0.0585 -0.0182 0.0088 
5.0 0.0023 -0.0007 0.0110 -0.0035 0.0017 0.0012 -0. 0004 0.0000 0.0541 -0.0170 0.0083 
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TABLE VIII. Influence functions: numerical values (n = 0). 

x 40 01> <6 0 € 1 > (6 0 Yo> ~1 EO> <EO €1> 

0.0 O. 0000 O. 0000 o. 0000 0.0000 0.0000 

0.1 -0. 0011' 0.0115 -0. 0060 0.0183 0.0034 

0.2 -0.0022 0.0230 -0.0107 0.0366 0.0072 

0.3 -0.0035 0.0346 -0.0127 0.0547 0.0117 

0.4 -0.0053 0.0462 -0.0112 0.0726 0.0170 

0.5 -0.0083 0.0576 -0.0053 0.0898 0.0234 

0.6 -0.0131 0.0685 0.0051 0.1058 0.0308 

0.7 -0.0206 0.0783 0.0200 0.1200 0.0392 

0.8 -0.0318 0.0866 0.0389 0.1316 0.0484 

0.9 -0.0472 0.0928 0.0610 0.1399 0.0580 

1.0 -0.0671 0.0964 0.0853 0.1442 0.0677 

1.1 -0.0911 0.0970 0.1105 0.1440 0.0771 

1.2 -0.1186 0.0943 O. 1352 0.1391 O. 0857 

1.3 -0.1481 0.0882 0.1584 0.1294 O. 0932 

1.4 -0.1778 0.0790 0.1788 0.1153 0.0994 

1.5 -0.2057 0.0669 0.1956 0.0972 0.1038 

1.6 -0.2297 0.0525 0.2081 0.0760 0.1064 

1.7 -0.2477 0.0366 0.2160 0.0528 0.1072 

1.8 -0.2582 0.0198 0.2191 0.0286 O. 1061 

1.9 -0.2601 0.0029 0.2177 0.0045 O. 1033 

2.0 -0.2531 -0.0132 0.2121 -0.0185 0.0989 

2.1 -0.2375 -0.0280 0.2029 -0.0393 0.0934 

2.2 -0.2142 -0.0408 0.1907 -0.0573 0.0868 

2.3 -0.1846 -0.0514 0.1764 -0.0720 0.0796 

2.4 -0.1506 -0.0595 0.1606 -0.0831 0.0720 

2.5 -0.1141 -0.0650 0.1441 -0.0906 0.0643 

2.6 -0.0772 -0.0680 0.1274 -0.0946 0.0566 

2.7 -0.0416 -0.0688 0.1111 -0.0955 0.0493 

2.8 -0.0090 -0.0677 0.0956 -0.0937 0.0424 

2.9 0.0195 -0.0649 0.0812 -0.0896 0.0360 

3.0 0.0431 -0.0609 0.0681 -0.0838 0.0303 

3.1 0.0614 -0.0560 0.0565 -0.0769 0.0252 

3.2 0.0745 -0.0506 0.0463 -0.0693 0.0208 

3.3 0.0827 -0.0450 0.0376 -0.0614 0.0170 

3.4 0.0865 -0.0394 0.0302 -0.0536 0.0137 

3.5 0.0866 -0.0340 0.0240 -0.0461 0.0110 

3.6 0.0837 -0.0290 0.0189 -0.0392 0.0088 

3.7 0.0787 -0.0244 0; 0148 -0.0329 0.0070 

3.8 0.0722 -0.0204 0.0115 -0.0273 0.0055 

3.9 0.0648 -0.0168 0.0089 -0.0224 0.0043 

4.0 0.0572 -0.0138 0.0068 -0.0183 0.0034 

4.1 0.0496 -0.0112 0.0052 -0.0148 0.0026 

4.2 0.0425 -0.0090 0.0040 -0.0119 0.0021 

4.3 0.0359 -0.0073 0.0031 -0.0095 0.0016 

4.4 0.0300 -0.0058 0.0023 -0.0076 0.0013 

4.5 0.0249 -0.0047 0.0018 -0.0060 0.0010 

4.~ 0.0205 -0.0037 0.0014 -0.0048 0.0008 

4.7 0.0168 -0.0030 0.0011 -0.0038 0.0006 

4.8 0.0138 -0.0024 0.0009 -0.0030 0.0005 

4.9 O. 0114 -0.0019 0.0007 -0.0024 0.0004 

5 0 0.0097 -0.0015 0.0006 -0.0019 0.0004 

they are alternatingly odd and even. Their over-all 
magnitude is considerably smaller than that of To, 
and it does not increase as the rank increases. The 
inner range contracts as the rank increases, in ac­
cordance with Table III. Thus the last tenn that is 
written in Eq. (26a) will be negligibly small com­
pared to To if (do/k), respectively, (eo/k), is a reason­
ably small number. A corresponding statement 
applies if n = 1 [Fig. 6(b)]. 

~o Yo) ~03> (° 0
2 

EO> (°0<0
2

) ~03> 
0.0000 0.0000 0.0000 0.0000 O. 0000 

-0.0565 -0.0005 -0.0108 -0.0061 0.0100 

-c. 1113 -0.0009 -0.0216 -0.0126 0.0196 

-0.1630 -0.0013 -0.0324 -0.0198 0.0285 

-0.2100 -0.0015 -0.0432 -0.0231 0.0365 

-0.2512 -0.0011 -0.0534 -0.0375 0.0432 

-0.2857 0.0000 -0.0627 -0.0480 0.0486 

-0.3127 0.0023 -0.0704 -0.0592 0.0525 

-0.3321 0.0061 -0.0757 -0.0707 0.0548 

-().3439 0.0115 -0.0780 -0.0822 0.0557 

-0.3482 0.0185 -0.0768 -0.0929 0.0552 

-0.3457 0.0269 -0.0717 -0.1022 0.0535 

-0.3371 0.0361 -0. 0628 -0.1097 O. 0508 

-0.3233 O. 0456 -0.0503 -0.1150 0.0472 

-0.3052 0.0544 -0.0350 -0.1177 0.0431 

-0.2840 0.0618 -0.0176 -0.1178 0.0386 

-0.2605 0.0670 0.0008 -0.1152 0.0339 

-0.2357 0.0694 0.0191 -0.1103 0.0291 

-0.2106 0.0687 0.0361 -0.1032 0.0248 

-0.1858 0.0648 0.0510 -0.0945 0.0207 

-0.1619 0.0580 0.0629 -0.0846 0.0168 

-0.1394 0.0489 0.0714 -0.0741 0.0135 

-0.1186 0.0380 0.0763 -0.0633 0.0105 

-0.0998 0.0263 0.0777 -0.0528 0.0081 

-0.0831 0.0146 0.0758 -0.0428 0.0060 

-0.0684 0.0037 0.0713 -0.0337 0.0043 

-0.0558 -0.0059 0.0647 -0.0256 0.0030 

-0.0450 -0.0137 0.0565 -0.0187 0.0020 

-0.0359 -0.0194 0.0477 -0.0129 0.0013 

-0.0284 -0.0230 0.0387 -0.0082 0.0007 

-0.0223 -0.0246 0.0300 -0.0046 0.0003 

-0.0173 -0.0245 0.0220 -0.0019 0.0001 

-0.0133 -0.0230 0.0150 0.0000 -0.0001 

-0.0102 -0.0205 0.0091 0.0013 -0.0002 

-0.0077 -0.0174 0.0043 0.0021 -0.0002 

-0.0058 -0.0140 0.0007 0.0025 -0.0002 

-0.0044 -0.0107 -0.0019 0.0026 -0.0002 

-0.0033 -0.0075 -0.0038 0.0025 -0.0002 

-0.0024 -0.0048 ·0.0047 0.0023 -0.0002 

-0.0018 -0.0025 -0.0051 0.0020 ·0.0001 

-0.0013 -0. 0007 -0.0051 0.0017 ·0.0001 

-0.0010 0.0006 -0.0049 0.0015 -0.0001 

·0.0008 0.0015 ·0.0044 0.0012 -0.0001 

-0.0006 0.0020 -0.0039 0.0010 -0.0001 

-0.0004 0.0023 -0.0033 0.0008 -0.0000 

-0.0003 0.0023 -0.0028 0.0006 ·0.0000 

- 0.0003 O. 0022 -0.002'3 0.0004 -0.0000 

-0.0002 0.0019 -0.0019 0.0003 -0.0000 

-0.0002 0.0015 -0.0015 0.0002 -0.0000 

-0.0001 0.0010 -0.0013 0.0002 -0.0000 

-0.0001 0.0003 -0.0012 0.0001 -0.0000 

Case (iii) belongs into a somewhat different cate­
gory because k2 replaces k. lO Thus the influence 
functions Un, V .. , W", .. . are either all even (n even) 
or all odd (n odd). They are plotted for n = 0 and 
n = 1 in Fig. 7. The sequences To, Uo, Vo, ... and 

10 Case (iii) is not strictly a case of a double transition 
point. It is a caae with two single transition points if go > 0, 
a caae with no transition point if go < 0 [see, e.g., F. W. J. 
Oliver, J. Soc. Indust. Appl. Math. 7, 306 (1959)]. 
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T1, U1 , VI, converge; the fonner to a finite func­
tion, the latter to zero. This observation is in agree­
ment with the following; the limits Z" of the two 
sequences must (if they exist) obey the differential 
equation 

In view of the given conditions of symmetry and 
convergency then 

In the scale of Fig. 7, already Vo is practically in­
distinguishable from (Wo and) the function V2 
exp (-x2 /2), and WI already is close to zero. Z"x2 

- Z~' = Z", 
which has the general solution 

Z" = [Co + C1 J e'" dx ]e-"'/2. 
From the convergency of the sequences Tn, U .. ,· .. 

(for which no analytical proof is given in this paper) 
it follows that the series Eq. (26a, iii) converges in 

TABLE IX. Influence functions: numerical values (n = 1). 

x 6
0 eO 6

1 €1 YO ~02> <6 0 eo) ~02> 
0.0 -0.3333 0.5000 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 -0.3333 0.4970 -0.0217 0.0121 0.0254 0.0063 0.0045 -0.0188 

0.2 -0.3332 0.4882 -0.0434 0.0237 0.0502 0.0125 0.0096 -0.0370 

0.3 -0.3329 0.4737 -0.0650 0.0341 0.0739 0.0187 0.0158 -0.0540 

0.4 -0.3320 0.4541 -0.0864 0.0429 0.0959 0.0247 0.0235 -0.0694 

0.5 -0.3302 0.4301 -0.1073 0.0497 0.1157 0.0304 0.0329 -0.0827 

0.6 -0.3270 0.4023 -0.1274 0.0542 0.1330 0.0356 0.0439 -0.0936 

0.7 -0.3221 0.3716 -0.1463 0.0562 0.1476 0.0398 0.0565 -0.1019 

0.8 -0.3152 0.3388 -0.1633 0.0559 0.1593 0.0427 0.0702 -0.1076 

0.9 -0.3060 0.3049 -0.1779 0.0532 0.1679 0.0441 0.0844 -0.1106 

1.0 -0.2943 0.2706 -0.1894 0.0485 0.1736 0.0436 0.0986 -0.1110 

1.1 -0.2801 0.2368 -0.1975 0.0420 0.1764 0.0412 0.1120 -0.1092 

1.2 -0.2637 0.2041 -0.2017 0.0342 0.1766 0.0366 0.1240 -0.1054 

1,3 -0.2451 0.1732 -0.2017 0.0254 0.1744 0.0301 0.1339 -0.0999 

1,4 -0.2249 0.1444 -0.1976 0.0160 0.1701 0.0219 0.1414 -0.0931 

1.5 -0.2034 0.1182 -0.1894 0.0066 0.1641 0.0123 0.1459 -0.0853 

1.6 -0.1811 0.0947 -0.1775 -0.0026 0.1567 0.0019 0.1475 -0.0770 

1.7 -0.1587 0.0739 -0.1624 -0.0112 0.1482 -0.0087 0.1461 -0.0685 

1.8 -0.1365 0.0560 -0.1448 -0.0191 0.1390 -0.0191 0.1419 -0.0600 

1,9 -0.1151 0.0409 -0.1253 -0.0259 0.1293 -0.0287 0.1353 -0.0517 

2.0 -0.0950 0.0282 -0.1047 -0.0316 0.1195 -0.0370 0.1265 -0.0440 

2.1 -0.0764 0.0179 -0.0838 -0.0361 0.1098 -0.0437 0.1163 -0.0369 

2.2 -0.0595 0.0097 -0.0633 -0.0394 0.1003 -0.0487 0.1049 -0.0304 

2.3 -0.0446 0.0034 -0.0437 -0.0417 0.0912 -0.0517 0.0930 -0.0247 

2.4 -0.0317 -0.0014 -0.0256 -0.0430 0.0826 -0.0529 0.0810 -0.0198 

2.5 -0.0207 -0.0049 -0.0094 -0.0434 0.0746 -0.0523 0.0693 -0.0156 

2.6 -0.0117 -0.0072 0.0047 -0.0430 0.0672 -0.0503 0.0582 -0.0121 

2.7 -0.0044 -0.0088 0.0166 -0.0420 0.0604 -0.0470 0.0480 -0.0092 

2.8 0.0012 -0.0096 0.0263 -0.0405 0.0542 -0.0429 0.0388 -0.0069 

2.9 0.0055 -0.0099 0.0338 -0.0387 0.0387 -0.0382 0.0307 -0.0050 

3.0 0.0086 -0.0099 0.0394 -0.0367 0.0438 -0.0332 0.0238 -0.0036 

3.1 0.0106 -0.0095 0.0432 -0.0345 0.0394 -0.0282 0.0180 -.0.0024 

3.2 0.0119 -0.0091 0.0454 -0.0322 0.0355 -0.0234 0.0132 -0.0016 

3.3 0.0125 -0.0085 0.0464 -0.0300 0.0370 -0.0189 0.0094 -0.0010 

3.4 0.0126 -0.0078 0.0463 -0.0278 0.0289 -0.0149 0.0064 -0.0006 

3.5 0.0123 -0.0072 0.0454 -0.0257 0.0262 -0.0114 0.0041 -0.0003 

3.6 0.0119 -0.0065 0.0439 -0.0237 0.0239 -0.0084 0.0024 -0.0001 

3.7 0.0112 -0.0059 0.0420 -0.0218 0.0217 -0.0061 0.0011 0.0001 

3.8 0.0105 -0.0054 0.0398 -0.0201 0.0199 -0.0040 0.0003 0.0001 

3.9 0.0097 -0.0048 0.0375 -0.0186 0.0182 -0.0025 -0.0003 0.0002 

4.0 0.0089 -0.0044 0.0352 -0.0171 0.0168 -0.0014 -0.0007 0.0002 

4.1 0.0081 -0.0039 0.0328 -0.0158 0.0154 -0.0005 -0.0009 0.0002 

4.2 0.0074 -0.0036 0.0306 -0.0146 0.0143 0.0001 -0.0010 0.0002 

4.3 0.0068 -0.0032 0.0285 -0.0136 0.0132 0.0005 -0.0010 0.0002 

4.4 0.0061 -0.0029 0.0265 -0.0126 0.0123 0.0007 -0.0009 0.0001 

4.5 0.0056 -0.0027 0.0246 -0.0117 0.0114 0.0008 -0.0009 0.0001 

4.6 0.0051 -0.0024 0.0229 -0.0109 0.0107 0.0009 -0.0008 0.0001 

4.7 0.0046 -0.0022 0.0213 -0.0102 0.0100 0.0008 -0.0007 0.0001 

4.8 0.00'12 -0.0020 0.0199 -0.0095 0.0093 0.0008 -0.0006 0.0001 

4.9 0.0038 -0.0018 0.0185 -0.0089 0.0087 0.0008 -0.0005 0.0001 

5.0 o 0035 -0 0017 o 0173 -0 0083 0.0082 0.0007 -0.0005 0.0001 
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the classical sense, supposing of course that 
Igolel < 1; that is, contrary to what one might have 
expected, this series is not an asymptotic series. 
(It is readily shown that, if this is true for n = 0 
and n = 1, then it is true for all n.) 

Whether the other two series [Eq. (26a)] are also 
convergent in the classical sense is not investigated 
in this paper. From the point of view of practical 
applications, the answer to this question is of little 
concern, as both series are useful only if the first 
few terms suffice. We did confirm, however, in a 
number of cases that the first few terms of such 
series do indeed closely approximate the correct 
solution if the last term considered is sufficiently 
small. For this purpose, we obtained numerical 
solutions by integrating Eq. (5) with boundary 
conditions obtained from outer range relations, e.g., 
Eq. (18). The numerical solutions agreed to the 
expected degree of accuracy with the terms written 
out in Eq. (23). 

So far we have discussed three cases where 71 = O. 
The over-all magnitude of the influence functions in 
Fig. 6 increases as 71 increases. This corresponds to a 
less rapid convergency in the outer range; we have 

a. '""-' (n - 2)(n - 3)xH T .. , 

(27) 

and the corresponding exponent of the higher rank 
influence functions is the sum of the respective 
exponents of the factors involved (compare 
Table III). 

An incorrect conclusion might be drawn from 
Eq. (27), namely, that no solution of Eq. (5) could 
converge, as Ixl ~ <X) , to the limit solution Tn if any 
one of the higher influence coefficients (g2, da, ea, 
ga, .•. ) would be different from zero. The proper 
condition for such convergency is Eq. (18a). 

vn. REMARK. ON APPROXIMATE PROCEDURES 

Differential equations with large parameters and 
transition points are not infrequently treated by 
approximate procedures, sometimes referred to as 
WKB methods. With exact influence functions 
available, it becomes of interest to compare with 
these the corresponding results of such approximate 
procedures. 

We report here results of such comparisons for two 
approximate procedures, described briefly as follows: 

Procedure (1)5; the standard transcendental trans­
formation 

F(~) = wJ(~); 

fO.2 

~o. 2 

'+0,2 

+0.2 

-0,2 

( oj 

+0.6 +0.6 

+0.4 +0.4 

+0.2 +0.2 

*-
-t.' ·0.2 

EJ 
• ••• 4 (b) .. 0.4 

FIG. 6. (a) Influence functions for n = O. (b) Influence func­
tions for n = 1. 

is applied to Eq. (2), with the functions wand z 
determined such that Eq. (2) takes approximately 
the form 

J:t - Ju = Ae + Bk~ + ~2p(~), 
where A and B are constants, and where a term 
with f Ik2 is neglected. The solution of this equation 
is then written asl1 

J ~ Ak2To(~) + BkTl(~) + p(~). 
----' 

11 The additional approximative assumption that is here 
made was discussed above in connection with Eqs. (16), (16a). 
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TABLE X. Functions Un, Vn, Wn, and first derivatives. 

x Uo U' 0 u
l U' 1 Vo V' 0 

0.0 1.3906 -0.0000 0.0000 0.2551 1. 4088 0.0000 

0.1 1. 3840 -0. 1305 0.0254 0.2521 1.4019 -0.1383 

0.2 1. 3646 -0.2572 O. 0502 0.2433 1. 3813 -0.2726 

0.3 1. 3328 -0.3766 0.0739 0.2290 1. 3477 -0.3989 

0.4 1. 2896 -0.4855 0.0959 0.2098 1.3019 -0.5138 

0.5 1. 2362 -0.5812 O. 1157 0.1865 1. 2454 -0.6143 

0.6 1. 1739 -0.6616 0.1330 0.1600 1.1796 -0.6981 

0.7 ".1044 -0.7252 0.1476 0.1313 1.1064 -0.7637 

0.8 1. 0294 -0.7713 0.1593 0.1014 1. 0275 -0.8104 

0.9 0.9507 -0.7999 0.1679 0.0714 0.9449 -0.8382 

1.0 0.8700 -0.8115 0.1736 0.0422 0.8605 -0.8478 

1.1 0.7890 -0.8074 0.1764 0.0147 0.7759 -0.8407 

1.2 O. 7090 -0. 7892 0.1766 -0.0106 0.6928 -0.8185 

1.3 0.6315 -0.7590 0.1744 -0.0329 0.6126 -0.7837 

1.4 0.5576 -0.7188 0.1701 -0.0521 0.5364 -0.7386 

1.5 0.488G -0.6711 0.1641 -0.0678 0.4652 -0.6858 

1.6 0.4235 -0.6180 0.1567 -0. 0800 0.3994 -0.6278 

1.7 0.3645 -0.5618 0.1482 -0.0889 0.3397 -0.5668 

1.8 0.3112 -0. 5044 0.1390 -0.0947 0.2861 -0.5050 

1.9 0.2636 -0.4475 0.1293 -0.0976 0.2387 -0.4442 

2.0 0.2216 -0.3924 0.1195 -0.0981 0.1972 -0.3858 

2.1 0.1850 -0.3404 0.1098 -0.0965 0.1614 -0.3311 

2.2 0.1534 -0.2921 0.1003 -0. 0932 0.1308 -0.2807 

·2.3 0.1265 -0.2481 0.0912 -0.0887 0.1051 -0.2353 

2.4 0.1037 -0; 2087 0.0826 -0.0832 0.0836 -0.1949 

2.5 0.0846 -0.1740 O. 0746 -0.0772 0.0659 -0.1597 

2.6 0.0687 -0.1438 0.0672 -0.0709 0.0515 -0.1294 

2.7 0.0557 -0.1178 0.0604 -0.0645 0.0399 -0.1037 

2.8 0.0450 -0.0958 O. 0543 -0.0583 0.0306 -0.0822 

2.9 0.0364 -0.0774 O. 0487 -0.0523 0.0233 -0.0645 

3.0 0.0294 -0.0622 O. 0438 -0.0467 0.0176 -0.0501 

3.1 0.0239 -0. 0497 O. 0394 -0.0415 0.0132 -0.0385 

3.2 0.0194 -0, 0396 O. 0355 -0.0368 0.0098 ·0.0293 

3.3 0.0159 -0.0315 O. 0320 -0.0325 0.0073 -0.0221 

3.4 0.0131 -0. 0250 O. 0289 -0.0287 0.0054 -0.0166 

3.5 0.0108 -0.0198 O. 0262 -0.0254 0.0039 -0.0123 

3.6 0.0091 -0.0158 0.0239 -0.0224 9. 0029 -0.0090 

3.7 0.0076 -0.0126 0.0217 -0.0198 0.0021 -0.0066 

3.8 0.0065 -0.0101 0.0199 -0.0175 0.0015 -0.0048 

3.9 0.0056 -0. 0082 0.0182 -0.0156 0.0011 -0.0035 

4.0 0.0049 -0.0067 0.0168 -0.0139 0.0008 -0.0025 

4.1 0.0043 -0.0055 0.0154 -0.0124 0.0006 -0.0018 

4.2 0.0038 -0. 0046 0.0143 -0.0111 0.0005 -0.0013 

4.3 0.0033 -0.0038 0.0132 -0.0100 0.0003 -0.0009 

4.4 0.0030 -0. 0032 0.0123 -0.0090 0.0003 -0.0007 

4.5 0.0027 -0.0028 0.0114 -0.0081 0.0002 -0.0005 

4.6 0.0024 -0.0024 0.0107 -0. 0073 0.0002 -0.0004 

4.7 0.0022 -0.0021 0.0100 -0.0067 0.0001 -0.0003 

4.8 0.0020 -0.0018 0.0093 -0.0061 0.0001 -0.0002 

4.9 0.0018 -0.0016 0.0087 -0.0056 0.0001 -0.0002 

5.0 0.0017 -0.0014 0.0092 -0.0051 0,0001 -0.0001 

Procedure (2): write 

F = AeTo(k~) + BkT1(k~) + F*(~), 
detennine the constants A and B such that Eq. (2) 
reduces to (exactly) 

F*1:2 - 1. { .. ·F*" F*' F* ... j ,. k4 '" 

and approximate F* by 

F* ~ l(*)(~). 

Each one of these two procedures was used to 
detennine separately the four influence functions 
00,0, 00.1, «=0,0 and «=0,1' The results were 

VI v' 1 Wo wo' WI W' 1 

0.0000 0.0951 1.4127 0.0000 0.0000 0.0334 

0.0095 0.0938 1. 4057 -0.1402 0.0033 0.0329 

0.0187 0.0901 1. 3848 -0.2761 0.0066 0.0315 

0.0274 0.0840 1.3507 -0.4040 0.0096 0.0293 

0.0345 0.0759 1. 3044 -0.5202 0.0124 0.0263 

0.0425 0.0661 1. 2472 -0.6217 0.0148 0.0226 

0.0486 0.0551 1.1806 -0.7062 0.0169 0.0186 

0.0535 0.0432 1.1065 -0.7722 0.0185 0.0142 

0.0572 0.0310 1. 0268 -0.8189 0.0197 0.0097 

0.0597 0.0188 0.943, -0.8464 0.0205 0.0053 

0.0610 0.0072 0.8582 -0.8555 0.0208 0.0012 

0.0612 -0.0036 0.7729 -0.8474 0.0207 -0.0027 

0.0603 -0.0132 0.6M2 -0.8243 0.0203 -0.0060 

0.0586 -0.0214 0.6084 -0.7884 0.0195 -0.0089 

0.0561 -0.0282 0.5318 -0.7.421 0.0195 -0.0111 

0.0530 -0.0335 0.4603 -0.6880 0.0173 -0.0128 

0.0495 -0.0372 0.3944 -0.6288 0.0160 -0.0140 

0.0456 -0.0395 0.3346 -0.5668 0.0146 -0.0146 

0.0416 -0.0405 0.2811 -0.5040 0.0131 -0.0147 

0.0376 -0.0404 0.2338 -0.4424 0.0116 -0.0144 

0.0336 -0.0393 0.1925 -0.3835 0.0102 -0.0)138 

0.2097 -0.0375 0.1569 -0.3282 0.0089 -0.0130 

0.0261 -0.0351 0.1267 -0.2775 0.0076 -0.0120 

0.0227 -0.0324 0.1013 -0.2319 0.0065 -0.0108 

0.0196 -0.0294 0.0802 -0.1914 0.0055 -0.0097 

0.0168 -0.0263 0.0628 -0.1562 0.0046 -0.0085 

0.0144 -0.0233 0.0487 -0.1260 0.0038 -0.0074 

0.0122 -0.0204 0.0374 -0.1005 0.0031 -0.0063 

0.0103 -0.0176 0.0285 -0.0793 0.0025 -0.0053 

0.0086 -0.0151 0.0215 -0.0618 0.0020 -0.0044 

0.0072 -0.0129 0.0160 -0.0477 0.0016 -0.0037 

0.0061 -0.0109 0.0118 -0.0364 0.0013 -0.0030 

Q.0051 -0.0091 0.0087 -0.0275 0.0010 -0.0024 

0.0042 -0.0076 0.0063 -0.0205 0.0008 -0.0019 

0.0035 -0.0063 0.0045 -0.0151 0.0006 -0.0015 

0.0030 -0.0052 0.0032 -0.0111 0.0005 -0.0012 

0.0025 -0.0043 0.0023 -0.0080 0.0004 -0.0009 

0.0021 -0.0035 0.0016 -0.0057 0.0003 -0.0007 

0.0018 -0.0029 0.0011 -0.0041 0.0002 -0.0006 

0.0015 -0.0024 0.0007 -0.0028 0.0002 -0.0004 

0.0013 -0.0020 0.0005 -0.0020 0.0001 -0.0003 

0.0011 -0.0017 0.0003 -0.0014 0.0001 -0.0003 

0.0010 -0.0014 0.0002 -0.0009 0.0001 -0.0002 

0.0008 -0.0011 0.0002 -0.0006 0.0001 -0.0002 

0.0007 -0.0010 0.0001 -0.0004 0.0001 -0.0001 

0.0006 -0.0008 O.OOPI -0.0003 0.0000 -0.0001 

0.0006 -0.0007 0.0000 -0.0002 0.0000 -0.0001 

0.0005 -0.0006 0.0000 -0.0001 0.0000 -0.0001 

0.0004 -0.0005 0,0000 -0.0001 0.0000 -0.0000 

0.0004 -0.0004 0.0000 -0.0001 0.0000 -0.0000 

0.0003 -0.0004 0.0000 -0.0000 0.0000 -0.0000 

Procedure Procedure Correct 
(1) (2) 

600,0 xTo-3T1 6(xTo-T,) xTo-3T,-x2To' 
600,1 xTI-2 6(xTl -1) XTI -2 -x2T 1' 
2Eo,o TI-xTo 2[(To'+x)/x'-TI] T,-xTo 
2Eo,1 l-xTI 2[(TI'-Cl)/X2+cl To] l-xT I 

A graphical comparison is shown in Fig. 8. Pro­
cedure (1) is incorrect in both the inner and the 
outer ranges in its prediction of 00,0 and 00.1, except 
at the transition point itself.12 Procedure (1) gives 

12 Presumably this explains the discre!)ancy around rf> = 
-20 0 between accurate solution (Ref. 1) and approximate 
solution in Fig. 4 of Ref. 5. 
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the correct result in the two cases, Eo.o and Eo .1, 

where the "transcendental transformation" is not 
actually transcendental. Procedure (2) predicts 
all four influence functions incorrectly in the inner 
range. These discrepancies are worth noting in view 
of the fact that, on first sight, both procedures would 
appear plausible enough. 

vm. REMARK ON HOMOGENEOUS SOLUTION 

SO far we have discussed influence functions which 
were derived from the convergent limit solution by a 
formal process and which, together with this con­
vergent limit solution, describe a nonhomogeneous 
solution of the complete Eq. (5). We remark now 
that the same formal process can be applied to the 
homogeneous problem, and can be used to derive 
influence functions from and for anyone homo­
geneous limit solution h. Indeed, if on the left of 
Eq. (24) we replace Tn by h, we obtain a similar but 
slightly simpler relation: 

M(xVh) = -p(:p - 1)xV- 2h - 2pxP-W, 
M(x"h') = -2(:P + l)xv+

l h - p(:p - 1)xV- 2h'. 

From this a table similar to Table V can be derived. 
There is, however, a significant difference between 
the two types of influence functions. While (the 
more important ones of) the nonhomogeneous in­
fluence functions converge more rapidly than 'the 
convergent limit solution as Ixl -t <Xl, the homo­
geneous influence functions diverge even more 
rapidly than the homogeneous limit solution. 

Two examples: let h == to; then 

'YI,O = -!n; 'YI.h = -!t~ 

with the suffix h denoting the homogeneous influence 

1.5 

1.0 

FIG. 7. Sequences To, Uo, Vo, ... and T1, U1, VI, '" . 
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FIG. 8. Resulta of approximate procedures. 

function. Formally the two results arc identical; 
however, for the asymptotic behavior as Ixl ~ <Xl 

we have 
1 

'YI.O '" ;; To; 

Similarly: to 

Bo•o = UxTo - x2T~ - 3TI ] 

corresponds 
BO•h = Uxto - x2t~]. 

In the expression for Bo•o the terms of order l/x 
cancel each other, and 

converges with convenient rapidity. On the other 
hand 

diverges considerably faster than to. 

IX. CONCLUSION 

A particular solution of a generalized nonhomo­
geneous Liouville equation has been discussed. The 
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solution selected is defined by the fact that it con­
verges at infinity. Its asymptotic limit is related to 
the Lommel function Sp,t but is not itself a Lommel 
function. 

A direct approach was used which avoids a trans­
cendental transformation. The influence which the 
parameters of the problem exert on the solution has 
been described by means of a formal development 
in terms of influence functions. The more important 
influence functions have been tabulated and have 
been represented in graphs. They allow a direct in­
sight into the nature of the solution. There is a 
strong indication that some formal developments 
are convergent series rather than asymptotic ex­
pansions. 

In addition to the nonhomogeneous influence func­
tions, both the homogeneous and the convergent 
nonhomogeneous limit solutions have been tabulated. 
The homogeneous influence functions have been 
discussed briefly; their convergency behavior is less 
convenient than that of the nonhomogeneous in­
fluence functions. 

The present influence functions are exact in a 
formal sense. A comparison with results obtained by 
approximate procedures shows that such approxima­
tions require caution. 

APPENDIX A. MODIFmD LOMMEL FUNCTIONS 

The same considerations that led to Eq. (14) lead 
to the more general form 

T t t,,+2 
" = C" ;; - (n + l)(n + 2) , (AI) 

where ii = 0 if n is even, ii = 1 if n is odd; we have 
C2 = Ca = 1, and have 

C .. H = (n + I)(n + 2)c .. 
because of 

t"'H = (m + 3)(m + 4)(t", - x"'), 

T"H = (n + l)(n + 2)T" + X"+2. 

(Ala) 

Watson18 discusses two types of Lommel func­
tions: sp,.(z) and Spo'(z). Setting 

4u = 2n - 1; v = i 
and, assuming for the time being that x is positive, 
setting ( i) (,,-6)/2 

xis"o'(Z) = ~ s!(x) , 

t (i) ( .. -6)!2 

x S"o'(z) = 2 S":(x) , 

11 G. N. Watson, A Treatise on the Theory of Be88el Func­
tions. (Macmillan and Company, Inc., New York, 1944), 
pp. 345-352. 

we find first [Ref. 13, 10.7, Eq. (1)] that the functions 
s! and S! are solutions of Eq. (7a), and second 
[Ref. 13, 10.7, Eq. (2)] that 

s!(x) = 
(n + l)(n + 2) 

With this, and taking also into account Eq. (9), 
we obtain [Ref. 13, 10. 7, Eq. (2)] 

S!(x) = (n ~ 3)! (n ~ 2)! 2"-5/2iH"/2)["'J 

(n + I)(n + 2) , 
(A2) 

where 

(n - 1) 2to [ •.. J == cos -4- 7r (-1/4)! 

(A2a) 

There is thus a certain correspondence between T .. , 
Eq. (AI) and S!, Eq. (A2). Indeed, the two func­
tions are identical if we set n = 2 (mod 4) or n = 3 
(mod 4); however, SO: does not fulfill Eq. (AI) if 
n = 0 (mod 4) or n = 1 (mod 4). 

On the other hand, the function S" * converges 
(for all n) if x -? + co [it has the asymptotic develop­
ment Eq. (15), see Ref. 13, 10.75 Eq. (1)]. Any solu­
tion of Eq. (7a) which converges for both x --+ + co 

and x --+ - co (that is, T,,) must hence have the 
form 

T" = S!(x) + h(ll(X)·const. (A3) 

Now Eq. (A2a) can be rewritten as 

2,,-5/2i1- (,,/2) [ ••• ] 

= 2"-'[h(2)(x) + (i + (i - l)i-")h(1)(x)] 

so that, applying Eq. (A3) to Eq. (A2), we can 
fulfill Eq. (AI) (this proves the existence of To and 
T1) and obtain 

T" = 2,,-,(n ~ 3)! (n ~ 2)! [h(2)(X) + (-)"h(1)(x)] 

(n + I)(n + 2) , 
(A4) 

from which the constants c" can be read directly and 
can be shown to fulfill Eq. (Ala). 

In view of the foregoing, the functions T" may be 
designated as "modified Lommel functions." In 
the present problem, where our attention is confined 
to real values of the variable x (which twice covers 
the positive imaginary axis of the variable z = lix2 
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of the Lommel function S,. .• ), these modified func­
tions are more convenient to use than the Lommel 
functions proper: they are real valued, convergent 
for x -+ - 00 as well as for x -+ + 00 and have . .' deSIrable symmetry propertIes. 

We note finally the asymptotic development for 
the functions t ... that is obtained from Eqs. (9), (11), 
(15), and (A4). Omitting the exponentially conver­
gent term (which is here irrelevant) we find for 
x-++ oo 

tm ~ ~.(m ~ 1)1 (:)1 
X (1 + l~x2 + ... )eZS/2 

- m(m - 1)x .. - 4 

X [ 1 + (m - 4~\m - 5) (1 + ... ) 1 (A5) 

This relation is not restricted to integer values m. 

APPENDIX B. NUMERICAL METHODS 

In this Appendix, the procedure used to prepare 
Table I is briefly indicated. 

The calculations were done on an IBM-7094 
computer. Integration of the homogeneous equation 

M(h) = 0 

from x = -7 to x = 5 for two sets of initial condi­
tions: h( -7) = 1; h'e -7) = 0 and h( -7) = o· 
h'( -7) = 1, led to two functions h(x)/h'(O) which 
were identical (to eight significant places) in the 
range -5.5 ::; x ::; 5 and which, therefore, were 
identical to (l)Ih(2)(X) = (t)IhUl(-x) in this range. 

Integration of the inhomogeneous equation 

M(To) = 1 

from x = -5 to x = 0, with approximate initial 
conditions determined by the asymptotic develop­
ment, Eq. (15), led to a function To which, in view 
of symmetry conditions at x = 0, could be written 
as 

'1'0 = To + T~(O)(i)1 h(2)(x) + ato 

with an unknown constant a. However, as removal 
of h (2) changed the value of To at x = -5 very little 
(that is, within the uncertainty range of the starting 
conditions), a to had to be very small at the starting 
point x = - 5, and in consequence had to be en­
tirely negligible away from this starting point. 
Consequently 

To ~ To + ato 

was accepted as the final result. 
Continuing the process, U 0 was determined from 

M(Uo) = To, 

the h (2) -component was again eliminated, and so on 
for Vo and Woo The sequence of functions T l , Ut , '" 

was determined by a corresponding procedure. 
On the basis of comparisons of hex) with NBS 

tablesl
" of To(O) and T~(O) with their exact values, 

Co and Cl, respectively, of Uo(O) with an independ­
ently determined value, and from other indications 
we concluded that our values for hex) and Tn were 
accurate to at least six significant places.10 The 
accuracy deteriorated somewhat as the process was 
continued to determine Un, Vn, and W .. , but even 
Wn should be accurate to about the four decimal 
places given in Table VIII. 

Where applicable, our numerical results were 
compared with the tables of Ref. 5. With the excep­
tion of an obvious misprint, all differences could be 
interpreted as rounding off errors in Ref. 5. 

According to Table V, the accuracy of calculating 
the influence functions decreases as Ixl increases. 
In a few cases, notably (o~) for lxl > 3.5, (o~) for 
lxl > 4, the last digit of the numerical values given in 
Table VII might be in error by about one unit. 

14 Na!Jonal Bureau of St~dards, Tables of Bessel Functio1l8 
of Fractwnal Order (Columbia Uruversity Press New York 
1949), Vol. II. " 

U An exception is h(2) for x ;::: 4.5. Here Table I should 
be accurate to about one unit in the last place given. 
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The results obtained by Polkinghorne for the set of ladder diagrams is generalized to a certain set 
of planar graphs. The leading asymptotic term behaves as 8-1(10 8)1>, and then the complete set of 
terms 8-1(10 s)m is summed over m. The final result allows the writing of an equation for the Regge 
trajectory function. 

I. INTRODUCTION 

T HE high-energy behavior for planar graphs 
has been studied by many authorsl

-
6 giving 

the sum over leading asymptotic terms only. It is 
known that the sum over only leading terms need 
not give, in general, the complete asymptotic be­
havior of the total Feynrnan amplitude. 

This was extended by keeping certain terms in 
addition to the leading terms6 for ladder graphs only, 
but without the complete sum over all these terms. 
Later this problem was completely solved for ladder 
diagrams by Polkinghorne7 giving the equation for 
the Regge trajectory. 

The aim of this paper is to generalise Polking­
horne's result for a certain number of planar graphs. 

In Sec. II a general method and treatment for the 
high-energy behavior of planar graphs is given. The 
particular form of the function I(x) which is the 
coefficient of the energy variable s allows us to write 
a starting point for all planar graphs with noninter­
secting p lines. 

In Sec. III, the result of Sec. II is applied to the 
particular case where p = 1. We give the relation 
which can be summed over p. p is a number of p­

lines in a particular graph. 
In Sec. IV the summation over p is carried out 

giving the final formula for the complete high-energy 
behavior of the A(s, t) in the s variable, and the 
relation which determined the Regge trajectory. 

n. GENERAL METHOD 

We consider the parametric representationl
-

7 of 
the scattering amplitude in the variables sand t, 

• The research reported in this document has been spon­
sored in part by the NSF and the U. S. Air Force Office of 
Scientific Research, OAR, through the European Office, 
Aerospace Research, U. S. Air Force. 

t On leave of absence from Institute Ruder Boskovic, 
Zagreb, Yugoslavia. 

1 J. C. Polkinghorne, J. Math. Phys. 4, 503 (1963). 
I P. G. Federbush and M. T. Grisaru, Ann. Phys. (N. Y.) 

22, 263 (1963). 
S I. G. Halliday, Nuovo Cimento 30, 177 (1963). 
4 J. D. Bjorken and T. T. Wu, Phys. Rev. 130, 2566 

(1963). 
6 G. Tiktopoulos, Phys. Rev. 131,480 (1963). 
8 T. L. Trueman and T. Yao, Phys. Rev. 132,2741 (1963). 
7 J. C. Polkinghorne, J. Math. Phys. 5,431 (1964). 

ignoring the spin of the particles. In our considera­
tion we include gq/ and GtjJ4 coupling for three-point 
and four-point vertices, respectively. 

The form of the scattering amplitude A (s, t), which 
is convenient for investigating the asymptotic be­
havior in the s channel and the Mellin transform 
applications, is 

where the notations are as follows: 

K is a constant including the product of certain 
powers of the coupling g and G; 

f dx = [' dX1 .,. 1'" dx", (2.2) 

where Xi is a Feynrnan parameter corresponding to 
an internal line; d(X) is the Feynrnan numerator 
usually written as 1,2 C(x) and 

V(s, t; x) = (f(x)/ d(X)Js + a(t; x) (2.3) 

is the Feynrnan denominator usually written as1
•
2 

D(s, t; x)/C(x). 
The algebraic structure of the function f(x) will 

be important for investigating the asymptotic be­
havior of A (s, t) in the s variable. d(X) is always 
a positive and nonzero function of x in the region 
where the integral (2.1) is taken. 

For all planar graphs I(x) has the same sign and 
its structure is given by the relation 

(2.4) 

The meaning of each factor in Eq. (2.4) can be seen 
from Fig. 2. 

The sum goes over all possible intermediate states 
which can be constructed in the s channel for a 
given graph A. (Fig. 1). By an intermediate state 
we mean a set of internal lines such that by opening 
all the lines belonging to it, A (Fig. 2). separates 
into two parts, where this cannot be done by opening 
only some of them. The other condition for the 
existence of an intermediate state is that at least 

136 
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c d 

-t 
a til 6 

FIG. 1. 

one path (Fig. 2) from a to b and one from c to d 
exists which does not go through the set S •. 

The Mellin transform of (2.1) in the s variable is 

A(a, t) = E" dsA(s, t)s-a-l 

= Kr(-a) J dx(j/A)QA-2e-!. (2.5) 

Determination of the asymptotic behavior of 
(2.1) in the s variable is now equivalent to look­
ing for the singularities of (2.5) in the a variable. 
One can easily see that they will come from the zero 
hypersurfaces of the function I(x) in the x variables. 

Following Halliday and Tiktopoulos3
•
5 we shall 

call out graph P reducible if by putting px's equal 
to zero we make I = 0, where this cannot be done 
for fewer x's. This choice certainly can be made in 
many ways. In order to get the first leading term, 
the second leading term and so on, we must choose 
the shortest p line defined by 

p = min [Pl, P2, ••• ] = min [Pi], (2.6) 

when one takes the P determined by (2.6) one can 
then make I = 0 by putting px's equal to zero in p 
ways. Putting all PP lines equal to zero our graph 
will have a structure as shown in Fig. 3, under the 
assumption that the P lines do not intersect. The A 
transformation5 (Appendix I) of all pp lines allows 

b 

FIG. 2. 

FIG. 3. 

the function 1/ A to be written in the form 

i_(P )1 
A - II Ai A' (2.7) 

where J is different from zero if we put all Ai equal 
to zero. After A transformation, (2.5) can be re­
written in the form 

~(a, t) 

= Kr( -a) J dx dfjw dA 11 X~+«-l J(a) , (2.8) 

where 

dx = dXl ... dXl (no Xi belongs to any of the p lines) 

I> 

dfj(j) = dfj(l) ... dfj(l» II [a(I: fj(j) - 1)], (2.9) 
j-l 

where fj(j) belongs to the (j) p line, 

dA = dAl ... d~. 

From the structure of (2.8) we see that the integral 
over Ai is divergent for p = -a. We can extend the 
definition of (2.8) using the partial integration with 
respect to Ai, obtaining 

" I' 

X II X~+a II (ajaX)J(a) (2.10) 
i-l 

Since (2.10) also contains terms which behave as 
(p + a) -m-l where m + 1 < p, it is convenient to 
expand the intergrand in (2.10) in powers of (p + a) 
so that (2.10) is of the form 

1'-1 

~(a, t) = .L: (p + a)-m-l~(m), (2.11) 
m-O 

where 

~(m) = (-?Kr( -a) I~' J dx dfj(j) dX 

" 
X [In II A,]I, (IT a/aA){1- [InJ! A]I. e- 5 A -2} , 

ll! l2! [f/ AY 
(2.12) 
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FIG. 4. 

where 
II + ~ = p - m - 1. 

Of course, if one considers only leading asymptotic 
tenns then m = p - 1. The aim is to find A(OI, t) = 
L" A" (01, t) in the closed fonn which gives the 
possibility of writing down the Regge trajectory. 
The tenn in (2.12) which contains A, in the fonn of 
the product can be expanded in the multinominal 
development 

(2. 13a) 

where 

(2.13b) 

and then we may integrate (2.12) over those A's 
for which the 8,8 are equal to zero. This can be 
perfonned immediately to give these A, zero in the 
bracket I I of (2.12) and the corresponding dif­
ferential operators removed. 

If there are r8/8 equal to zero, the (2.12) will 
have the fonn 

A,,(m) .. I"-o = (- )"Kr( -01) L L J dx dy(j) dA 
h.l. _, 

X II [In8~t']"1 (II (JjaA)[FI.(Q,)e- l: I(II a)-2] 

(2.14) 

with the function F,"(Qi) = F1I(QI, " . , Q~) given 
in the integral fonn, see Appendix I, as 

F,"(Q,) = 1, J tr 8(i>ii'il - 1) 
l2. i-I 

p [In t (il' ... ,ir)Q(il , ... , ir)]11 
X II dy(j) ~i) p , 

[ L (ii, ... ,ir)Q(i1, ... ,ir)] 

(0 

(2.15) 
where 

Q(il' ... ir) = Q(I)(O, i l )Q(2)(il , i 2) ... Q(r+I)(ir, 0) 

and Q(i) (ii-I, if) 

depends only on the bubble CJ) and the positions 
if-I and if in the fj(j-l) and y(j) p line, respectively, 

u = pr is the number of tenns contained in the sum 
over (i); 

The summation in (2.15) goes over all possible sets 
(il .. , ir) with i~ = 1, 2, ... , p. The integral (2.15) 
is taken over the y(f) corresponding to the r p lines 
put equal to zero. 

Unfortunately, we are not able to integrate (2.15) 
in a satisfactory way for l2 ¢ 0 and p > 1 or to 
find the most convenient fonn for Fl. which would 
allow us to carry out the summation over p and m 
for general planar graph. 

In the case of l2 = 0 we can integrate (2.15) for 
all p, getting the function Fo(Q,) completely factor­
ized. Because we want l2 ¢ 0 we will limit our­
selves to the case when p = 1, which is completely 
solvable. 

m. " = 1 CASE 

When we take p = 1 the functions FI.(Q,) have 
the very simple fonn. 

F (Q) = 1- [In Q]II (3.1) 
II il! Q 

where Q = Q(1)Q(2) '" Q(r+I) for r8/s equal to zero 
as in (2.14). 

The graph which will be considered satisfying the 
condition p = 1, is of the form given by Fig. 5. 

It is assumed that all shaded blocks are of the 
same structure and there are no lines of the length 
one in the shaded blocks joining the a b line with c d. 
This class of diagram, of course, contains, in par­
ticular, ladder diagrams for which Q is just 1/ a. 

Since the function (3.1) can be also factorized by 
putting rX's equal to zero, i.e., 

(3.2) 

where 

(3.3) 

we shall have the completely factorized function 
A,,(m) for r8/s put equal to zero. The conditions 

c

llIl
-------

m
d 

Cl ---"t-: - - b 

FIG. 5. 
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(2.1380) and (3.3) taken together satisfy the equation 

E 8; + fJ = p - m - 1. (3.4) 

Following Polkinghorne7 we can write A.,(m) in 
the form (Appendix II) 

~(m) = (1 + a)",+l 2: (1 + at' (p iJ~-' )' 
, r . 

X [(2: a)(2: FY-l(2: a)]._o, 

where 

Fn(a) = 2: F.(Si, fJ; a) 
8ifJ 

and 

( 
g2 )'1+1 f 

F.(s" fJ; a) = -1611'2 K" dx dA 

X IT [In Ai]" (1 + a),,-1 
Si! 

(fr iJ/iJA){[In ~!(.)]P (1 + at 

X [Q(tI)r1 ~ -2(n)e-3(tll} 

(3.5) 

(3.6) 

(3.7) 

(and similarly an) where Kn includes only the coupl­
ing constants g and G from the shaded blocks (Fig. 5.) 
coming in a bubble (n). The brackets in (3.5) are 
polynomials in z for instant 

IV. SUMMARY AND CONCLUSION 

Now, it remains to find A(a, t), defined 

A(a, t) = 2: ~(a, t) 
" 

(3.8) 

= E 2: (1 + a)-"-I~(m). (4.1) 
" m 

Putting (3.5) in (4.1), and keeping m and r fixed 
for a while, the sum over p will give the relation 

A(a, t) 

= E (1 + a)-'[(L: G)(L: F).-I(2: G)].-I, (4.2) , 

which is just a geometric series with the sum 

A(a, t) = (2: G)[I/(a + 1 - 2: F)](2: G) (4.3) 

if (4.2), of course, converges. (4.3) has the same 
structure as was given by Polkinghorne for ladder 
diagrams. It is easy to see that the Regge poles are 
determined by the solution of 

5'(a) = a + 1 - 2: F = o. (4.4) 

c 

3IT.1l/~;~··--=~·JI--' .-' .-.-~ y'~f) /._. _.-' I 
.,- ...... .tJ.,(IJ 

1 -'-' - .-' 
a. '.Ie/) y(JJ)--' --. ~ -- --' yCP} b 

FIG. 6. 

Since a and F are functions of t the convergence of 
the series (4.2) will depend upon the variable t. This 
can be investigated only for a particular graph for 
which the structure of a(x, t) is known. We have been, 
of course, assuming that t is in such a region that the 
series (4.2) converges. 
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APPENDIX I 

Function f/ 4 and l Transformation 

The function f appearing as the coefficient of the 
energy variable S has a structure given by the rela­
tion (2.4) 

(ALI) 

One can make f = 0 by putting a certain number 
of x's equal to zero, for instance PiX'S, where i = 
1, 2, ... and Pi = 1, 2, .... Following Halliday and 
Tiktopoulos3

•
6 the graph will be p reducible if by 

putting only px's equal to zero we make f = 0, where 
p = min [Pi]. 

If we assume that all p lines, of which there are 
say p, do not intersect we shall have a graph of the 
structure shown in Fig. 6, where y(jl represents the 
(j) p line. Each yW has p components y!i>, y~il, . .. ,y;il. 
The remaining internal lines in the graph (Fig. 6) 
are labeled by x. Each term in (ALl) will always 
contain one element from each p line in a product 
ITs" i.e., one from the y(llp line, one from y(2lp 

line and so on. We can fix, for a moment the product 
y!~) ... y!:> ... y!:> and consider all possible llines 
passing through these points, and then sum over 
all possible products which can be constructed in 
such a way. This procedure allows (AI.I) to be 
written in the form 

f = ~ y-~l) .y-<21 -(")(~ .. .. II ) £...J.. ••• •• Yip £...J ""1""2 X , (AI.2) 
(i) 
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cr.) 

yCi-fl 

FIG. 7. 

where (i) means a sum over all possible combinations 
of the set (iI, ... , it» with i~ = 1, .. " p and the sum­
mation in (~) is over allliines passing through the 
set (il ... i,,) (Fig. 6). If we now replace the y(i) p line 
by y(i) ·X. where X; is a constant or a variable then 
(AI.2) has the form. 

f = (fr A;) 2: y~~) ... y!:)(2: ~I~2 IT x) 
;-1 (il 

(AI.3) 

It is easily seen that putting any of the A; equal to 
zero makes f = O. This is the idea of A-transforma­
tion. A's will certainly come in the function ~I and ~2' 

Let us suppose that we have put r's equal to zero. 
The product ~I~2 ITx will factorize as 

.+1 

IT (~I(t')~2(i) IT x). 
; 

Relabeling the contracted p lines as 1, 2, .. " r, we 
can write f from (AI.3) in the form. 

1.·.-0 = 2: (iI' ... i.) 
(0 

.+1 

X [2: IT (~I~2 IT xy)] , (AlA) 

where 

(il ... i.) = y!~) 'yi:) ... iit), and (~1~2 IT xii) 
depends only on a particular bubble. Then it is easy 
to see that the summation and the product can be 
exchanged in (AlA) and we obtain 

.+1 

1.·.-0 = 2: (ill' .. i.) IT (2: ~1~2 IT XV). (AI.5) 
(i) 

The summation in (AL5) graphically means the 
following (Fig. 7), where the ii_Ii; line is ITxii and 
the wavy lines are contracted p lines. The bracket 
(2: ~I~2 ITxy) depends only upon the element in­
side one bubble and the way the IT xii is joined with 
the contracted p lines which determined this bubble. 
Finally, we can write 1/~, for rX's equal to zero, 
in the form 

Ii - 2: (iI' ... i.)Q(i1, ... i.), 
~ .}.'.-o - (0 

i k = 1,2, .,. , p, (AL6) 

where 

Q(il' ... ,i.) 

= IT (L: ~1(t')~2(t') IT Xii) = IT QW • (AL7) 
~(~); ;-1 

Since Q(i) depends only on the way in which Q(i) is 
joined to the two nearest contracted p lines, the 
function Q(i1 ••• i.) has the form 

Q(i1, ... ,i.) 

(AL8) 

APPENDIX II 

A derivation of Eq. (3.5) is given. The Eq. (2.14) 
with (3.2) can be rewritten in the form 

A,,(m)r .... -O = K( - Y 

X .~ J dx dA II [~~t]·' (IT a/aA) 

{ 

.+1 [In Q(o]tJ, } 
X IT ~;! [Q(Or1e- H(IT ~)-2 , (AII.l) 

where the summation must satisfy the condition 

2: s; + ~ = p - m - 1. (AII.2) 

The important point is that (AILl) is completely 
factorised and allows the introduction of the func­
tions F and G (Fig. 4)7 defined as 

( l )'" J F",(s;, ~j a) = - 1&n-2 K", dx dA 

X {[In ~;"')t (1 + a)tJ[Q(";)rl~-2(n;)e-a(,,,)} 
(AII.3) 

and 

( l)" Gis;, ~j a) = g --2 K" 
1671' 

X {[In ~!(")t (1 + a)tJ[Q(G)r l ~ -2(a)e-3(G)} , (AlIA) 

where a and, similarly, b are the number of 8; in G" 
and Gb, respectively; and n; is the number of 8, 
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in F n,. a, band n. always satisfy the relation 
.-1 

a + b + I: n. + r = p, (AlI.5) 
.-1 

where r is the number of Si put equal to zero. The 
conditions (AII.2) and (AIL5) together become 

a b 

m + 1 = - I: (s, - 1) - /3. - I: (s, - 1) 
"-1 ft., 

- /3b - I: rI: (Sj - 1) + tin,] + r, (AlI.6) 
i-I 

where 
a b=O 1 ···p-1 , " ; p> 2 

n, = 0, 1, ... p - 2 

which was the reason for introducing the functions F 
and G in the way shown in (AII.3) and (AII.4). 

Having the functions (AII.3) and (AlIA), we can 
rewrite (AIL1) in the form of the product 

(AlI.7) 

where bars mean the corresponding summation over 
8. > 0 and /3. The sum over all possible ways of 
choosing rs/s equal to zero is just 

" 2! a-o, a-'. 
~ ., 0 ••• k 

" 50!··· Uk· 

X " (r - I)! F-'Y· ••• F-OYP-'-. 
~, 1 0 p-.-k 

'Y 'Yo· .•• 'Yp-r-k· 
(AIL8) 

with the conditions 
k 

I: 0; = 2; 
;-=1 (AlI.9) 

p-r-1c: p-r-1c: 

I: 'Y;=r-l; I: i'Y; = p - r - k 
i-I i-I 

so that (AIL8) can be written as 

8: -2 8=-r-k " - r-1 
k! (I: G).-o (p _ r _ k)! (~ F)._o, (Arr.1O) 

where, for instance 

(I: F) = F 0 + zF 1 + iF 2 + ... (Arr.ll) 

and similarly for (I: G). 
The sum over k which goes from zero to p - r tells 

us that (AIl.l) summed over all r's which are al­
lowed, is 

kim) = (1 + a)m+l I: (1 + a)-r 
r 

x (p 8~'r)1 [(I: G)(I: Fy-l(I: G)].-o, 

which is just the relation (3.5). 

(All. 12) 
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The Hamiltonian of an isotropic harmonic oscillator is invariant under unitary transformations in 
three dimensions. This well-known invariance is exploited in a treatment of the Talmi transformation, 
viz., the transformation of two-particle oscillator functions to center-of-mass and relative coordinates. 
A simple and transparent form of this transformation in terms of rotation matrices and Wigner 
coefficients of SUa is given. The calculation of these Wigner coefficients is described and the problem 
of degeneracies discussed. 

A. INTRODUCTION 

IN shell-model calculations of nuclear energy levels 
with an effective two-body interaction one is led 

to the determination of two-particle matrix elements 
of the type 

(ala,\ Vl , lafa~) 

= f q,a~(rl)<Pa~(r2)VClrl-r21)<PaArl)q,a.·(r2) dTl dT2' (1) 

Here q, is the wavefunction of a particle in the com­
mon average potential, which in practical calcula­
tions is often assumed to be that of a harmonic 
oscillator. The usual way to evaluate these matrix 
elements is the method of Slater integrals, well known 
in atomic spectroscopy. For the nuclear case, how­
ever, Talmil has developed an alternative method, 
which is limited to the use of oscillator functions, 
but in that case is much more practicable. It rests 
on the fact that the Hamiltonian of two identical 
oscillators 

H = (1/2m)(p~ + P:) + !mw2(r~ + r;) (2) 

is invariant under the transformation to center-of­
mass and relative coordinates: 

R = (1/ V'2)(r1 + r 2), r = (1/ V2)(r1 - r 2), (3) 

H = (1/2m)(p2 + p2) + !mw2(R' + I), (2') 

80 that the solutions of H in terms of Rand r are 
again oscillator functions. The integration over R is 
then immediately carried out, and the calculation of 
(ala, \V121 a{a~) is reduced to that of the Talmi 
integrals' 

II = N~ L= VCr) e->r'r2l+2 dr. (4) 

J I. Talmi, Relv. Phys. Acta 25, 185 (1952). 

In the application of this method, one needs to 
know the coefficients in the expansion 

These coefficients, often called "transformation 
brackets," have been calculated in various ways by 
several authorsl

-
8 and have been extensively tabu­

lated.9 The methods used in all these calculations do 
not, however, give a direct insight into the mathe­
matical structure underlying the Talmi transforma­
tion. It is the main purpose of the present paper to 
clarify this structure. 

The essential feature of our treatment is the 
exploitation of the well-known invariance of the 
Hamiltonian (2) under U6 , the unitary group in six 
dimensions. (More generally, the Hamiltonian of N 
identical isotropic oscillators is invariant under 
UaN.)10.11 Thus the eigenfunctions of this Hamilton-

(6) 

ian, constitute a basis for a representation of U6• In 
setting up a classification of wavefunctions (6) 
according to irreducible representations, it is natural 
to consider the subgroup U2 X SUs contained in U8, 

2 R. Thieberger, Nucl. Phys. 2, 533 (1956-1957). 
a K. W. Ford, E. J. Konopmski, Nucl. Phys. 9, 218 

(1957-1958). 
4 M. Moshinsky, Nucl. Phys. 13, 104 (1959). 
IT. A. Brody, Rev. Mex. Fis. 8, 139 (1959). 
• R. D. Lawson and M. Goeppert-Mayer, Phys. Rev. 117, 

174 (1960). 
7 V. V. Balashov and V. A. Eltekov, Nuc!. Phys. 16,423 

(1960). 
8 A. Arinla and T. Terasawa, Prog. Theoret. Phys. 

(Kyoto) 23, 115 (1960). 
t T. A. Brody and M. Moshinsky, Table8 of Transformation 

BracketsJ ~Universidad de Mexico, Mexico City, 1960). 
10 J. M. Jauch and E. L. Hill, Phys. Rev. 57, 641 (1940). 
11 G. A. Baker, Jr., Phys. Rev. 103, 1119 (1956). 
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since the six coordinates of the functions (6) are 
physically grouped in 2 X 3 coordinates. This is 
done in Sec. C. We shall make use of the subgroup 
Ui X SUa to define a classification of wavefunctions 
based upon irreducible representations of SUa. A 
reduction matrix (generalized Wigner coefficients) 
then takes us from the set of functions (6) to the set 
classified according to SUa. Section D deals with 
the definition and actual computation of this reduc­
tion matrix. 

The scheme defined in Sec. C is particularly 
adapted to the Talmi transformation (5); this is 
because the Talmi transformation happens to be a 
finite element of U6 , which belongs to the subgroup 
U2 X SUa. Thus, once we have set up our scheme 
in Secs. C and D, the Talmi transformation may be 
written down immediately, as we see in Sec. E. 

The classification of wavefunctions according to 
irreducible representations of SUa is, of course, not 
new. Some years ago Elliote2 used this procedure in 
his model of nuclear rotational spectra, and more 
recently several papers have dealt extensively with 
oscillator bases for the irreducible representations of 
SUa.13

-
I

f> Because the mathematical problem of 
reducing the irreducible representations of SUa upon 
restriction to its subgroup O~ cannot be completely 
defined by purely group-theoretical methods,16.17 
there are many such classifications, and most of 
them yield nonorthogonal bases. We show in Sec. E 
that this ambiguity in the definition of our scheme 
has no influence in the particular case of the Talmi 
transformation matrix. 

B. SYSTEMS OF IDENTICAL OSCILLATORS 

We begin by considering a system of N three­
dimensional oscillators. While this system is more 
general than what is required by our problem, the 
discussion of its algebraic structure is no more com­
plicated than that of the special case N = 2. 

We define the creation and annihilation operators 
for oscillator quanta (h = m = '" = 1): 

a~k = (1/V2)(xa k - ipak), 

ad = (1/ V2)(x a .l: + ip"k)' 
(7) 

The index a refers to the particle number (a = 
1, 2, ... , N), while k denotes the Cartesian com-

12 J. P. Elliott, Proc. Roy. Soc. (London) 245A, 128, 562 
(1958). 

11 V. Bargmann and M. Moshinsky, Nud. Phys. 18, 697 
(1960)' 23, 177 (1961). 

14 M. Kretzschmar, Z. Phys. 157, 433 (1960). 
16 M. Moshinsky, J. Math. Phys. 4, 1128 (1963). 
11 G. Racah, Lectures at the Istanbul Summer School of 

Theoretical Physics. 1962 (to be published). 
17 R. Sen, "Construction of the Irreducible Representa.­

tions of SU a/' Ph.D. thesis, Jerusalem, Israel (1963). 

ponents. The commutators of a and a* are 

[ad, ap~] = lJ"/llJ"I' (8) 

In terms of these operators, the Hamiltonian of N 
isotropic oscillators may be written as 

(the zero-point energy has been dropped). 
Now define the set of (3N)2 operators 

X~~ = a~kapl' 
with the commutators 

(9) 

(10) 

[X~t X~:J = lJpplJl"X~: - lJaalJk"X~~, (11) 

The operators X~~ all commute with H, and indeed 
are precisely the infinitesimal generators of USN. IS 

In terms of these generators 
N a 

H = E EX~t. (12) 
a-I k-l 

The solutions of the Schrodinger equation 
H'IF = E'IF for a given integer E may be written 

'¥ = C·a:,k,atk •... a~BkB 10), (13) 

where the ground state 10) is defined by a"k 10) = 0 
for all a, k, (0 I 0) = 1, and C is a normalization 
coefficient. Since H is invariant under UaN, the 
functions '¥ span a representation of this group. 
They are symmetrical in the permutations of any 
two creation operators, i.e., their symmetry is that of 
a completely symmetric tensor of rank E. Hence the 
representation of UaN spanned by the set of 'IF's is 
irreducible, and characterized by the Young diagram 
IE, 0, 0, ... }, consisting of one row of length E.I0 

Within the algebra of USN, various subsets of the 
generators form subalgebras. Particularly relevant 
to our problem (as is shown in Sec. E) are the follow­
ing two subalgebras: UN, generated by 

a 
MaP = E x~f, (14) 

,1,-1 

and SUa, generated by 
N 

Ak' = E x:t - lH·lJk, . (15) 
a-I 

Since these two sets commute: 

[M"P, A"I] = 0, (16) 

it follows that USN contains as a subgroup, the 
direct product of its two subgroups UN and SUa. 

Upon restriction of UaN to the elements of 
18 G. Racah, Group Theory and Spectroscopy, Lecture 

Notes, Princeton (1951) (reprint CERN 61-8). 
18 M. Hamermesh, Group Theory and its Application to 

Physical Problems (Pergamon Press, New York, 1962), Chap. 
10. 
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UN X SUa, the irreducible representations of UaN 
decompose into direct sums of irreducible representa­
tions of UN X SUa. It follows, from theorems proved 
by Weyl, 20 that for the totally symmetric representa­
tions of UaN: 

[UN X SUa]IB.O.O .... , = ~ [UNh,[SUah" (17) 
lA' 

where the sum is to be taken over all Young dia­
grams {A} which are partitions of E, with a number 
of rows n ~ min (3, N). 

Equation (17) imposes a restriction on the Young 
diagrams {A}: they must simultaneously characterize 
irreducible representations of UN and of SUa. How­
ever, as is well known,19 all inequivalent irreducible 
representations of SUa may be characterized by 
Young diagrams of at most two rows. Equation (17) 
then shows that already in the case of two oscillators 
all of the irreducible representations of SUa are 
involved, as has been pointed out previously by 
Moshinsky.2l 

C. OPERATORS FOR THE TWO­
OSCILLATOR SYSTEM 

Specializing now to N = 2 we have the reduction 
U6 ::> U2 X SUa. Of the four generators in U2 , three 
combinations can be formed which constitute the 
components of an angular-momentum-type vector 
(and generate the subgroup SU2 within U2). We 
write this upseudospin" vector13 in a spherical basis 

F+ == -(I/V2)Ml
\ Fo == !(Mll 

- M22), 
(18) 

F _ == (1/ V2)M2t, 
defining, as usual, the square of F as the scalar 
operator 
F2==:E (-)mFm·F_m=(F~-Fo)+M12.M21,(19) 

m-O.* 

is, of course, fully equivalent to that by the Young 
diagram {A} == {AI, A2}; and indeed from (17) we 
have the relationship 

E = Al + A2' (21) 

As for I, we note that the irreducible representations 
of U2 must be of dimension (2f + 1), because of the 
angular-momentum character of the F operators. 
On the other hand, dim [U2l ,A, .A., = (AI - A2 + 1) 
(see Ref. 19). By equating the two, we find 

I = leAl - A2)' (22) 

Turning now to SUa, we have three combinations 
of its generators which constitute the angular­
momentum operator: 

Ji == -i(Alm - Ami) (k, l, m cyclic), 
(23) 

These operators form a subalgebra within SUa, 
corresponding to the subgroup O~ C SUa. The in­
terest in this subgroup is motivated by physical 
considerations: the effective interactions in Eq. (1), 
as well as the Hamiltonian (2) or (9), are spherically 
symmetric, so that we would like our functions to 
be eigenfunctions of the angular momentum 
operators. 

A study of the full algebra17 of SUa would have to 
consider the remaining five combinations of genera­
tors which, in the spherical basis, constitute an 
irreducible tensor set of rank 2.12 However, for our 
purposes such a detailed study is not required. We 
need to know how to characterize irreducible repre­
sentations of SUa, and this information is provided 
by Eq. (17), which in our case (N = 2) becomes 

which commutes with its three components. There [U2 X SUa]IB.O .... ' 
remains the fourth combination of generators '" [U] X [SU] L.... 2IA,.A., a IA,.A.,· (17') 
within U

2
, IA,.A., 

H = Mll + M2\ (20) 

which commutes with all other operators of the 
group. Thus we may select a set of three operators 
within U2 (H, F2, and Fo) which commute with one 
another; their eigenvalues are denoted by E, f(f + 1) 
and v, respectively. 

These three eigenvalues suffice to characterize the 
functions which span the representations of U2 : E 
and f characterizing the irreducible representation, 
and v enumerating the functions within this repre­
sentation. The characterization by means of E and f 

20 H. Weyl, The ThelYl"Y of Groups and Quantum M echanic8 
(Dover Publications, Inc., New York, 1931), 2nd ed. (revised), 
Chap. V 12. 

21 M. Moshinsky, Nucl. Phys. 31, 384 (1962). 

Thus (indirectly) we find that the irreducible repre­
sentations of SUa may be characterized by 
{!E + I, !E - fJ; and indeed the study of the full 
algebra of SUa would lead to the same result.22 

22 The operator F' [Eq. (19)] is closely related to the 
contraction Q' of the above-mentioned tensor of rank 2 j 
one has the operator indentity 

Q' ... 2F' + IH' + H - U'. 
Furthermore, FI, which is the Casimir operator of U 2, is 
closely related to the Casimir operator G2 of SUI, defined IS as 

G2 ... I 2:'.k Aik,Ak •. 
It may be verified that the following operator identity holds: 

6G .... U' + Q', so that 6G .... 2F2 + IH2 + H. 
Hence the eigenvalue of G 2 in the representation {).1, ).2} is 
given by 

(/2 = ~().1! + ).,2 - ).1).' + 3).1) 

in accordance with Eq. (106) of Ref. 18. 
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D. TWO-PARTICLE FUNCTIONS 

The chain of reductions 

U6 ~ U2 X SUa ~ U2 X 0; 

has yielded a set of five operators which commute 
with one another: H, F2, Fo, t, and Jo. We now 
require our two-particle functions to be simultaneous 
eigenfunctions of these five operators. Such a require­
ment is not quite sufficient to define the two-particle 
functions, because, as pointed out in the introduc­
tion, the classification of states in an irreducible 
representation of SUa by the quantum numbers of 
O~ is incomplete. We need three quantum numbers 
to label the states of SUa,18 and O~ yields only two, 
the total angular momentum t and Jo. In other 
words: an irreducible representation of SUa decom­
poses upon restriction to O~, and in this decomposi­
tion a given representation of O~ may occur several 
times, so that we need an additional label a to 
distinguish these states.2a 

This additional quantum number a cannot be 
defined by the introduction of yet another subgroup 
Gf of SUa, because Of would in turn have to contain 
O~, and no such group exists. For the time being 
we merely consider a to be an unspecified label that 
distinguishes between representations D J having the 
same J. 

The multiplicity N J of a representation D J of O~ 
in a representation of SUs characterized by the 
partition {>-l, >-2} is given by the formula26 

N "(>-1' >-2) = p(>-l + ; - J) 
_ p(>-2 + ~ - J) _ p(>-l - >-2 : 1 - J), (24) 

where 

P(x) = {[X] for x 2 0 
o x ~ O. 

The two-particle states may now be denoted by 

IEtJlaJm) , (25) 

and by the definition of these functions we know 
not only their eigenvalues under the operations 
H, F2, F 0, J2, and J 0, but also their transformation 

28 The situation is quite different if we restrict SU 3 to its 
subgroup U 2, as is done in the applications of SUa to strong 
interactlOn symmetries.24 U 2 is labeled by three quantum 
numbers (hypercharge, isospin, and third component of 
isospin), and consequently in the decomposition of SU, eve!y 
representation of U 2 occurs at most once, so that the U I 
scheme is completely defined. 

24 R. E. Behrends, J. Dreitlein, C. Fronsdal, and W. Lee, 
Rev. Mod. Phys. 34, 1 (1962). 

2i G. Racah, Rev. Mod. Phys. 21, 494 (1949). 

properties under other operations of the group. For, 
in consequence of the fact that the two-particle 
functions are eigenfunctions of F2 and F 0, it follows 
that under the operations F % they transform ac­
cording to 

T V2 F % IEtJlaJ m) 

= [(f T v)(f ± JI + 1)]i lEt, v ± 1, aJm), (26) 

and a similar transformation holds for the operators 
J % which raise and lower the index m. 

In view of Eq. (1) we now attempt to express the 
two-particle functions (25) in terms of the well­
known single-particle oscillator functions. For a 
single oscillator, the total symmetry group of the 
Hamiltonian is Ua(N = 1). The reduction chain is 
simply Ua ~ SUa ~ O~, and Eq. (24) then gives 
us the familiar result that the angular momenta l 
occurring within an oscillator level of energy E (an 
irreducible representation of Ua) are 

l = E, E - 2, E - 4, '" ,0 or 1. (27) 

The quantum number a is therefore superfluous in 
the single-particle case. We use the notation 

I Elm) (28) 

for the single-particle oscillator functions, and define 
these as being simultaneous eigenfunctions of H, J2, 
Jo (defined for the case N = 1): 

HIElm) = E·IElm), 

J 2 lelm) = l(l + 1) ·Ielm), (29) 

Jolelm) = m·lelm). 

From Eq. (13) it follows that any eigenfunction 
of H must be a linear combination of monomials 
in at (of degree E) which operate on the ground 
state 10); hence I Elm) must be of the form 

'It. = P.(a*) 10), (30) 

where P, is a polynomial of degree E. 

Now it has been noted by Bargmann and 
Moshinsky13 that if we let a .. operate on the state 
P,(a*) 10) the result is the same as if we had applied 
()jaat to P ,(a*) and then let the result operate on 
the state 10). Thus the operator a~ak may be replaced 
by a~()/()at [acting on P.(a*)], and we see that the 
angular momentum operators [Eq. (23)] take on the 
same form as they have in the configurational 
coordinates, with at corresponding to x ... It then 
follows that the polynomials P.(a*) must be solid 
spherical harmonics in at; and we may write: 

IElm) = A,I",r'eim4>p,,:(cos 8) 10), . (31) 
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where A., ... is a normalization constant, and r, 9, cp 
are the spherical polar coordinates of the point whose 
Cartesian coordinates are at, a~, a~. 

The observation of Bargmann and Moshinsky 
makes available to us all the analytical information 
about spherical harmonics. In particular, it makes it 
easy to compute the effect of ak and at upon the 
IElm}, out of which the matrix representation of these 
operators in the basis I Elm} may be obtained. 

We construct, out of the operators ak, an irreduci­
ble tensor operator of rank 1, whose spherical com­
ponents are defined by 

a,. == =real ± ia2)/0 ao == aa. (32a) 

Similarly, from the at we construct another tensor26 
of rank 1 with spherical components 

b,. == =r(at ± a~)/0 bo == a~, (32b) 

and then we find, for the reduced matrix elements 
(see Appendix B) 

(E - 1, 1 + 1 II a II E, l) = +[(l + 1)(E - l)];, 

(E - 1, 1 - 1 II a II E, 1) = - [leE + 1 + 1)];, (33) 

and 

(E'l' II b II El) = -(Elil a II E'l'); 

all other matrix elements vanish. 
The single-particle operator H = Lk at·ak is 

now seen to be the scalar product (b· a). Defining for 
each particle similar tensors of rank 1, a ( a) and b ( a) , 

one sees that all the generators of Ua may be ex­
pressed as scalar products in terms of these: 
MaP = (bCa)'a CP». Equations (33) then enable us to 
compute the effect of the operators M a

,6 upon the 
product functions I ElllmlH E2ll/ma). 

Since we wish to obtain combinations of product 
functions in which the operators t and J 0 are diag­
onal, it is natural to combine the product functions 
immediately into 

IEIlIEl/laJm) == L (_)-h+I.-"'(2J + I); 

which by their construction are eigenfunctions of t 
and J Q. We now ask for the effect of H, F2, F Q, and F,. 
upon functions of the type (34). We note that these 
operators are all expressible in terms of MaP; in 
particular, H = MIl + M22 and Fo = !(Mll _ M lI2

), 

But from Eq. (29) we see that 

II The tensor b is not the Hermitian conjugate of a, but 
rather b_ .... (- r(a...)"', 

M"" IEalama) = Ea'IEalama), (35) 

so that the functions (34) are eige¢unctions of H 
and F 0 with the eigenvalues 

E = El + Ea and II = l(EI - Ell), (36) 

respectively, 
Thus we find that the four operators H, Fo, ra, Jo 

are all diagonal in the functions21 I EIlIE2lllJ). This 
is not the case for the operator Fa = (F~ - F 0) -
M 12 .M2I, The matrix elements of Ml2 and its ad­
joint M21 are computable by a straightforward appli­
cation of standard methods:28 

(EIIIEal2JI MIll IEmEH~J) = (-l+J {ll~li{;} 
X (Em II a II Elll)(E2l2 II a II E~lD. (37) 

By Eq. (33) we must have E{ = EI - 1 and E~ = 
Ea + I, Because of this fact, the operator F + = 
- (1/ 0) M12 and its adjoint -F_ are referred to 
as Htransfer operators,"13 which remove a unit from 
the energy index of one particle and add it on to the 
other. Clearly, the product of the two transfer 
operators, which appears in the expression for F', 
can have matrix elements only between initial and 
final states having the same energy index, since the 
unit transferred by M21 is restored by M 1l1

, Hence Fa 
has as its only nonvanishing matrix elements 

(EIlIEa1aJ I F2 IEl1fE21~J), 

where If = 11 + (0 or ±2), and similarly for l2' 
Since E and II are fully determined by EI, E,l [Eq, (36)], 
this means that the term (F~ - F 0) which appears 
in F'I is merely a mUltiple of the unit matrix within 
the subspace with fixed E, II, J (and, of course, m), 

Our task now is to pass from the functions (34), in 
which four of the operators are diagonal, to linear 
combinations of these in which also F'I will be diag­
onal. This transformation will take place in sub­
spaces of fixed E, II, J, m, so that the diagonal form 
of the corresponding four operators is unaffected, 
From its dependence on MIll, M21, one sees that Fa 
is a symmetric matrix, hence diagonalizable by an 
orthogonal transformation. 

Now, if F2 has distinct eigenvalues within the 
subspace, the diagonalization process is unique, and 
the resulting functions are the desired two-particle 
functions. If, however, ~ has degenerate eigen-

J7 The matrix elements for all operators under considera­
tion are independent of mi' henceforth m will be omitted 
from the designation of the unction. 

28 In establishing the sign of the matrix element, we use 
the fact that the parity of l, equals the parity of f" and that 
furthermore, E', = Eo ::I:: 1 ill the matrix elements, This 
allows us to replace (- )", +I. by (- )" + •• +1 ... (- )B+l, 
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values,z9 the transforming matrix is no longer unique, 
and a further requirement must be made to specify 
the two-particle functions completely. Nevertheless, 
as has already been mentioned, the computation of 
the brackets in the Talmi transformation can be 
carried out without completing the specification. 

Assuming that by some process of specification, the 
transformation from the functions (34) to the two­
particle functions has been determined uniquely; we 
denote that transformation by K, with matrix 
elements 

(ElllE2lzJ \ EfvaJ). 

The indices E, II are redundant, inasmuch as these 
are fixed by El, E2' We therefore abbreviate our nota­
tion and write 

(38) 

And now, the remarks made above about the lack of 
uniqueness in the diagonalization of F2 imply that 
whatever transformation matrix we might find will 
be of the form K· A == R where A is any matrix 
which commutes with the diagonal form of H, ~, 
Fo, J2, Jo. 

In our computations of the matrix R (see Appendix 
C) we have required R to be an orthogonal trans:" 
formation which brings us from the functions (34) to 
a basis in which H, F2, Fo, ;Z, Jo are diagonal. We 
have, in addition, required R to bring the operators 
F + and F _ to their canonical form (26). These two 
requirements restrict the freedom of the undeter­
mined factor A, by which R differs from K: A may 
now be any orthogonal matrix which commutes 
with the diagonal form of H, F2, F 0, J2, J 0, and which 
also commutes with the canonical forms of F + and 
F_. The procedure which we have adopted for the 
computation of R involves (g - 1) arbitrary choices 
of eigenvectors in any g-fold degenerate case (e.g., 
one choice in the case E = 6, J = 2). 

E. THE TALMI TRANSFORMATION 

The transformation T in configuration space, which 
was defined by 

T :rl -H = (I/V2)(rl - r2), 

r2 ~R = (1/V2)(r1 + r2), 
(3') 

induces a linear transformation T in the space of the 
wave functions, enabling us to expand functions of 
(rl' r 2) in terms of functions of (r, R) [see Eq. (5)]. 
In this expansion, the coefficients are simply ele-

it A twofold degeneracy appears for E ~ 6, a. threefold 
degeneracy for E ~ 12. See Table 2 in Ref. 13. 

ments of the matrix which represents T in a basis 
spanned by the given wavefunctions. 

One sees immediately that T belongs to Us, and, 
moreover, that it is contained in the subgroup 
U2 C U2 X SUs C Us: 

1 

1= 1 E SUa, 

In order to identify the transformation in function 
space which is induced by T, we note that the effect 
of T on configuration space may be equally well ob­
tained by the differential operator 

exp {~ t: ( -X2k a:lk + Xu a!)}· (40) 

By the correspondence between the configurational 
coordinates and operators ad' a:J. we see that the 
differential operator in the exponent of (40) cor­
responds to the operator 

E (-a2taa + a1ta2J.) = - M21 + M13 
k 

= - V2(F+ + F_) = 2iF". (41) 

It follows that the operation induced by T in function 
space is 

T = exp a-irF.I. (42) 

Since we know the explicit representation of 
F. = (i/V2)(F+ + F_) in the basis \E]llE2l2J), it is 
in principle possible to evaluate the matrix repre­
sentation of T in this basis by exponentiation, as 
indicated in Eq. (42). However, this method is not 
practicable. Instead, we make use of the fact that 
the representation of exp {!irF .. 1 is well known (and 
tabulated) in the basis where F + and F _ have their 
canonical form Eq. (26). The two-particle functions 
dealt with in the previous section provide precisely 
such a basis, and we shall follow Edmonds30 in 
denoting the irreducible representation matrices of 
exp {!ir F ,,} by 6. (I) • 

The effect of the transformation T on the two­
particle functions may be thus written down im­
mediately: 

\EfJl'aJm)(r, R) = E 6.~~!·\EfvaJm)(rl' r2). (43) . 
In order to obtain the effect of T on the original 

functions !ElllE2l2Jm), we must transform Eq. (43) 

'0 A. R. Edmonds, Angular Momentum in Quantum Me­
chanics, (Princeton University Press, Princeton, New Jersey, 
1957), Chap. 4.5. 
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by the Wigner coefficients (38): 

/SLelJ m) = ~ ~ ~ (SLtl 1 faJ)tl~~~ 
/01. ,. ld. 

2v = El - E2, 2v' = S - t. 

The transformation brackets are then 

t == (El11E212J 1 SLtlJ) 

= ~ (eLtl 1 faJ)tl~~~· (EI IIEz12 1 faJ), 
fa 

or, in abbreviated notation, 

(44) 

(45) 

(46) 

The tabulation of K in Appendix D corresponds to 
this notation: matrices are labeled by the triplet 
(EJ; v), rows by (l112), and columns by (fa). 

The label a is required only in the case of degener­
acy. (The degree of degeneracy is given by 
N J(!E + f, !E - f), Eq. (24).] Since tl~!~' must 
vanish if the subscripts are larger than f in their 
absolute magnitude, only those terms will contribute 
to the sum where 

EXAMPLES 

(a) E = 4, J = O. N J = 1 for f = 2, and vanishes 
otherwise. 

If we substitute R == K·A for K in Eq. (46), where (20,00; 0 110, 10; 0) 
A is the undetermined factor discussed in Sec. D, 
we see that = (00 140; 2 12)(00 140; 0 1 2)·tl~~) 

R tl R- I = (KA) tl (KA)-I = K tl K-I = t (47) 

since A commutes with the canonical form of 
(F + + F _) by the requirements made on R. Hence, 
the incompleteness of the specification of K has no 
effect on the matrix t. 

Since R was also required to be orthogonal, trans­
formation by R preserves unitarity, so that t is a 
real unitary matrix. 

Since tl~~~ = (-r-" . tl~~! (see Ref. 30), it follows 
(again from the orthogonality of R) that transposing 
the matrix t can only change the signs of some of its 
elements. The symmetry rules for the transformation 
brackets are derived in Ref. 31 by similar group­
theoretical considerations. 

Finally, we give several examples of the computa­
tion of transformation brackets, using Eq. (45) and 
the tables of R in Appendix D. The results check 
with those tabulated in Ref. 9. It is to be noted that 
our functions IE11IE212J) appear as Inl lln212J) in the 
tables of Ref. 9. In order to facilitate comparison 
we use, in these examples, the quantum numbers ni 
in the brackets, but replace (Elll E212 1 faJ) by the fully 
equivalent symbol (1112 1 EJ; v I fa). Here ni and 
Ei, li are connected through Ei == 2n. + li while 

EI - E2 = 2v. 

Thus Eq. (45) is rewritten as 

(nl lln2 12J I NLnlJ) 

= ~ (1112 IEJ; vi fa)(Ll IEJ; v' 1 fa)· tl~~~. (45') 
f. a 

81 M. Moshinsky and T. A. Brody, Rev. Mex. Fie. 9, 181 
(1960). 

(b) E = 6, J = 2. This case is of particular inter­
est, because of the occurrence of degeneracy (N J = 2 
for f = 1). 

(04,02; 2 122,00; 2) 

= L: (42 162; 1 1 fa)(20 162; 3 1 fa)·tlg> 
!-3 

= (1)· (~) . e~!) = (I!OY 
(12,02; 2 112, 10; 2) 

= ~ (22 I 62; 1 I fa)(20 1 62; 1 I fa)·tl:i> 
!. a 

= (;:~~t)·(~)·(~I) + (2.i'7)i)(2~3)t)(-;I) 

+ [(2.3\l)I)(2.3~'ll)t) 
+ (5'7~'1l)i)(~~i~~:) J(~) 

= 1/3(7)'.' 

(For the last two examples it is necessary to know 
that tl~~> = -l/S, tlg) = (15)'/S. tl (Il is tabulated in 
Ref. 30 for f = k/2, k ~ 4.) 
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APPENDIX A 

The matrix t of transformation-brackets decom­
poses within the space of dimension (E;5) into blocks 
of fixed E and J. The dimension of each such block is 

(AI) 

where N J is the multiplicity of D J , as given in Eq. 
(24). Evaluation of the sum is straightforward, if 
tedious. The result is 

(_ )I-m( l l - 1 1)[l(E _ 1 + 2)]1. 
m -m 0 

The correspondence Z ~ a~ then tells uS that 

(E + 1, 1 + 1, ml ao*IE, l, m) 

= (-)1-m-1(~ l_+m
1 ~)[(l + 1)(E + 1 + 3)]', (B5) 

or 

(e+l,l+lllbIlE,l)= +[(l+I)(E+l+3W.(B6) 

Similarly, 

(E + 1, 1 - 1 II b II E, l) = - [lee - 1 + 2)]'. (B7) 

A similar calculation for the tensor a shows that deE, J) = ~ (J + 1 + (~I)E-J) 

X (E - ; + 2)(E - ; + 4). 
(e - 1, 1 + 1 II a II E, l) = +[0 + 1)(E - l)]',(B8) 

(A2) (E - 1, l- 111 a II E, l) = -[lee + l + 1)]', (B9) 

APPENDIX B: THE REDUCED MATRIX ELEMENTS 
OF b AND a 

It is sufficient to consider anyone of the com­
ponents of the tensor b, say a~. 

By the correspondence with configurational coor­
dinates, at ~ Z, while I Elm) corresponds to the solid 
spherical harmonic 

where 

"'[ (2l + 1)(l - m)! J1 
A.lm= (-1) (E+l+l)!!(e-l)!!(l+m)! . (B2) 
Now 

Z·'Y.lm = A.lmrH 1eim4>[cos fJ·p~(cos fJ)] 

Adm (l - m + 1) '11 

A . (2l + 1) . ,:1.+1.Z+1,1>I 
E+l, Z+l,m 

+ A.lm (l + m) '11 (B3) 
A '(2l + 1)' ,:1.+1,1-1,1'1, 

f+1.1-1.m 

where we have used the recursion relation for Legen­
dre polynomials: 

(2l + 1) cosfJ'P~(cos fJ) = (l - m + 1)pr+1(cos fJ) 

+ (l + m)P;'.-l(cOS fJ), (B4) 

Inserting the values of A. lm into (B3) we find that 
the coefficient of 'Y t+ 1 ,I + 1 ,m is 

(_ )1-"'-l(l + 1 l 1)[(l + 1)(E + l + 3)]l, 
m -m 0 

while that of 'Y'+l,l-1,m is 

APPENDIX C: ON THE COMPUTATION OF 
(Elll d. I foll) 

By its definition, K (and also R == K· A) brings 
F + and F _ to their canonical form (26). Thus we may 
write 

[(f + v + 1)(f - V)]1(E1l1E2l2 I fed) 

= 1: (E1 + 1, If, E2 - 1, l~ I fed) 
' 1 ' I.' 

X (E1l1E2l2JI V2F- IE1 + 1, If, E2 - 1, l;J) 

= (_)E+J 1: (E1 + 1, If, E2 - 1, Z; I fed) 
' 1 ' l.' 

[Here we have made use of the explicit representa­
tion of M12 == (V2F_)* given in Eq. (37); 2v == 
1:1 - 1:2, E = E1 + E2'] 

Equation (01) may be reinterpreted as a vector 
equation, if we introduce the notation R(EJv; fa) 
for the vector whose components are (E1l1E2l2 I faJ). 
The dimension of such a vector is determined by 
the number of possibilities (lll2) which are compati­
ble with the values of E, J, v. In particular, when 
v = !E (and therefore, necessarily, f = !E) we 
must have: E2 = 0, El = E, and therefore l2 = 0, 
II = J (which means that J must have the parity 
of E). It follows that there is only one possibility 
in this case: (lll2) = (J, 0), i.e., the vector 
R(EJ, !E; !E) is of dimension 1, and accordingly 
(EJOO I !E, J) = 1. 

Introducing this vector notation into (01), we 
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obtain a reinterpretation of the equation as a re­
cursion relation: 

orthogonality properties of the matrix R reinter­
preted in terms of the vector notation: 

[(f + v + 1)(f - v)]i·R(EJv; fa) 

= (V2F_)·R(EJ, v + 1; fa), 

R(EJI/; fa)·R(EJI/; f'a') = ~fI'~""" 

(02) Equation (04) enables us to determine 

(04) 

which enables us to compute in succession all vectors 
R(EJv; fa) for given E, J, fa provided we have a 
"starting" vector R(EJf; fa). 

As we have just seen, the vector for f tE is 
known: 

R(EJ, lE; !E) = (1), (03) 

hence we can compute in succession 

R(EJ, !E - 1; lE) = ~l (V2F_)'R(EJ, !E; !E), 

R(EJ, tE - 2; tE) 

= [2(E ~ I)]} (V2F_).R(EJ, IE - 1; tE), 

etc. 
Having obtained all vectors for which f = !E, 

we go on to the family of vectors for which f = lE-1. 
To find the starting vector, we make use of the 

R(EJ, !E - 1; lE - 1) 

as the vector orthogonal to R(EJ, !E - 1; !E) 
(both are two dimensional, and the determination 
is unique). From this we then derive, for all Ivl ~ 
!E - 1, the family of vectors R(EJv; tE - 1). 

One could proceed further in this way, if it were 
not for the occurrence of degeneracies. When E 2:: 6, 
a degeneracy occurs for f = tE - 2 at various 
values of J (see table Ref. 13). In those cases where 
the degeneracy is twofold, there will be two undeter­
mined vectors R(EJ, !E - 2; !E - 2, a), a = 1, 2. 
One of these is chosen arbitrarily out of the family 
of vectors orthogonal to both R(EJ, !E - 2; tE) 
and R(EJ, !E - 2; tE - 1). The other vector is 
then uniquely detennined, and both suffice to 
detennine the full set': R(EJv; !E - 2, a). When 
the degeneracy is threefold (this can occur for 
E 2:: 12), two arbitrary choices must be made, etc. 

APPENDIX D: TABLES OF (lll2 I EJ; " I jet) 

Rows are labeled by the pair h, l2. Columns are labeled by the pair j, a; a is omitted in cases where there is 
no degeneracy. 

B-3: 

v = l 
J! ! 2 

21 
+2 Vs 

J = 1 
3 3 

B - 4: 

J=2 

01 -Vs 2 
3 3 

v = 1 

2 1 

31 Va 0 
v'2-5 v'2-5 

11 = 0 

2 

22 v2 
3 

1 0 

0
0 

3 

20 - 0 _1_ .! 
3v2 v2 3 

-0 -1 1 
02 3v2 V2 "3 
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E = 5: 

J = 3 

J=2 

J = 1 

E = 6: 

J=4 
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II = 0 

2 0 

~ -v5 
22 3 3 

00 v5 2 
3 3 

II = i 
i ! 

41 
+3V3 2V2 

-v'5-7 -v'5-7 

21 
-2V2 3V3 

-v'5-7 -v'5-7 

II = ! 
i i 

32 
2V2 0 

v'3-5 v'3-5 

12 
-02V2 

v'3-5 v'3-5 

II =! 
t .! 

~ 

21 
o 2V2 

v'3-5 v'3-5 

01 
-2V2 0 

v'3-5 v'3-5 

,,= 2 

3 2 

v5 V2-i1 
51 

3V3 3V3 

31 
- v'"2"T1 5 

3V3 3V3 

32 

30 

12 

32 

12 

10 

II =! 

! ! i 

-2 1 2 
5 5 v5 

V3 -2V2 1 
y'2:5 v'3-5 '\1"2.3 
3V3 4V2 1 

5V2 5V3 V2-3-5 

II = ! 
i i i 
2 20 -0 
5 5V3 v'3-5 

-20 11 2 

5V3 a:5 3v5 

o 2 2 

v'3-5 3v5 3 

" = 1 ,,= 0 

3 2 1 3 2 1 

-2V2 VIi VIi -V3 
II' v'2-1i 42 

3 0 3 -v"2-7 -v"2-7 
33 

5 
0 

5 

40 
VIi -v5 1 

31 
VIi -1 V3 

3v5 3 v5 -5- V2 5V2 

22 v'"2"T1 v5 1 
13 

VIi 1 V3 

-v'5-7 v2-7 V'2-5-7 -5- V2 5V2 
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J::: 3 

J=2 

" = 1 

2 

42-3- V5 
V2-7 V2-7 

22- V5 _ 3 _ 
V2-7 V2-7 

" = 2 
3 2 

31 -V2-Va 
V5V5 

11 Va -V2 
V5 V5 

II = 0 

2 0 

" = 0 

2 o 

-~ -la 
33~ 0 V 

V5 V5 

31 Va -1 _1_ 

v'2-5 V2 V5 

13 Va _1 __ 1_ 

v'2-5 V2 V5 

II = 1 
3 2 1, 1 

42 4 2Va 0 
50 -v"5-7 

1,2 

301 
5V7 

22 -2V2 1 7 V2 
V'5.7 V2·3·7 V2·3·11 V5·7·11 

20 V2 1 0 -3V2 
V5 V2·3 V2·3·11 V5.11 

02 0 -0 V5 2V7 
5 V3-5 V3Tt 501 

33 2V2 0 
J = 1 .y'3.5 .y'3.5 

J=O 

11- 02V2 
.y'3.5 V3-5 

II = 1 

3 

II = 0 

3 1 

22 2 V2 0 33 2 v'a:7 
V3-5 V3-5 5 5 

00 - 0 2V2 11 - v'a:7 2 
V3-5 V3-5 5 5 

II = 0 
3 2 1, 1 

33 2V2 0 -60 
5V5 501 

31 -3Va -1 - v'a:7 
5 v5 V2 5 V2-i1 

13 -3Va 1 - va:7 
5V5 V2 5V2·11 

11 30 0 V2 
5v5 501 

1,2 

3Va 
5V5-11 
-13V2 
5V5-11 
-13V2 
5V5-11 
-4~ 

5y'5":"Ti 
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Existence of Proper Modes of Helicon Oscillations* 
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In this paper it is shown that the class of electromagnetic problems for which the operator i(a/at) 
(where t denotes time) is self-adjoint extends beyond problems involving only insulators and perfect 
conductors. The class includes problems in which the perfect conductor is generalized to a medium 
with antisymmetric resistivity tensor. The latter medium approximates media in which helicon waves 
?an propagate. Helicon waves are known to propagate in good conductors in a strong magnetic field Bo' 
It will be found that two neceBBary conditions for eelf-adjointneBB of the operator i(a/at) are that 
the sample carrying helicons must not have a finite portion parallel to Bo• and it must be surrounded 
by a reflecting surface that prevents energy from escaping. 

1. INTRODUCTION 

HELICONS are circularly polarized electro­
magnetic waves, which can propagate abnost 

without attenuation inside a solid of high conduc­
tivity, permeated by a strong magnetic field. (The 
condition for unattenuated propagation is that 
WaT » 1, where w. is the cyclotron frequency of the 
current carriers and T is the relaxation time.) In 
atmospheric physics these waves are well known as 
radio whistlers.1 The term "helicon," which is pres­
ently accepted to denote whistlers in the context of 
solid state physics, is due to Aigrain,2 who first 
proposed achievable experiments to detect them in 
solids.s Observation of helicons was first announced 
by Bowers, Legendy, and Rose,' at frequencies of 
order 10 cps. In recent years, helicons have been 
observed and studied by a number of authors; a 
short survey of the literature on the subject is given 
in another article by the present author.6 

In this article we deal with the abstract boundary­
value problem presented by helicons under three 
idealizing assumptions: (i) The sample carrying 
helicons has negligible resistivity (but is not a super­
conductor, so that it does not exclude magnetic 
flux). (ii) The resistivity tensor is the same as would 
be for uniform dc fields. (That is, nonlocal effects in 
space and time are ignored.) (iii) The constitutive 
equation is linearized. Assumptions (i) to (iii) 
amount to assuming that (owing to the presence of 

* This work was supported partly by the U. S. Atolnic 
Energy Commission. 

t Present address: United Aircraft, Corporation Research 
Laboratories, East Hartford, Connecticut. 

1 L. R. O. Storey, Phil. Trans. Roy. Soc. London A246, 
113 (1953). 

2 P. Aigrain, Proc. Intern. Conf. SeInicond. Phys., Prague, 
1960, 224 (1961). 
a~, b<.>wever, q. V. KonBtantinov an~ V. I. Perel', Zh. 

Ekspenm. 1 Teor. FIZ. 38, 161 (1960) (Enghsh trans!.: Soviet 
Phys.-JETP 11, 117 (1960)]. 

4 R. Bowers, C. R. Legendy, and F. E. Rose, Phys. Rev. 
Letters 7, 339 (1961). 

6 C. R. Legendy, Phys. Rev. 135, A 1713 (1964). 

the external magnetic field mentioned above) the 
sample carrying helicons is characterized by a fixed, 
antisymmetric resistivity tensor. 

The arrangement we consider consists of a sample 
(region MI in Fig. 1) and a closed reflecting surface 
(surface S in Fig. 1) surrounding it, to stop any 
energy from escaping; between the sample and the 
reflecting surface there is a nonconducting region 
(region M2 in Fig. 1). The net charge on the sample, 
and the charge density in the nonconducting region 
are assumed to be zero. The sample is required to 
have smooth boundaries; a further requirement on 
the boundaries is that they have no finite portion 
parallel to the external magnetic field. 

Under the above assumptions, the operator 
-i(a/Ct), operating on electromagnetic fields, is 
shown to be self-adjoint. In the proof it is not neces­
sary to assume that the dielectric constant, magnetic 
susceptibility, and Hall coefficient are constants 
throughout the regions of interest; the external 
magnetic field is not required to be uniform, nor 
the displacement current negligible. Aside from the 
restrictions already stated, there is no restriction on 
the shape of the sample; no use is made of any 
assumptions to the effect that the sample is con­
nected or simply connected. 

The purpose of making the seemingly arbitrary 
restriction, that the boundary shall have no finite 
portion tangential to the external magnetic field, is 
to avoid a certain surface mode of energy absorp­
tion6

•
6 confined to surfaces tangential to the external 

field. If the resistivity is assumed to be finite,and is 
then allowed to tend to zero, the electric currents in 
this mode increase without bound, and the Ohmic 
loss does not tend to zero. Therefore, in samples with 
such surfaces, any free oscillations are bound to be 
attenuated, the operator -i(a/fJt) cannot have real 
eigenvalues, and cannot be self-adjoint. (If anoma-

e J. M. Goodman and C. R. Legendy (unpublished). 
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FIG. 1. Notation for Sec. 2. Region M consists of regions 
Ml and M 2• Ml is the sample carrying helicons. 

lous skin effect is taken into consideration, the 
surface loss is found to disappear for low enough 
resistivity.5) 

Electromagnetic fields will be represented as 
vectors [see (2.1)] in an abstract vector space with a 
scalar product [see (2.2)], as was done by Marcuwitz7 

and Wilcox.s The present formulation slightly dif­
fers from theirs, in that, throughout Sec. 2 we deal 
only with instantaneous electromagnetic fields, and 
do not even implicitly assume any time dependence 
[such as exp (iwt)]. The operator T = -i(ajat) is 
rewritten, using two of Maxwell's equations, so 
that it operates on the spatial coordinates only [see 
Eq. (2.3)]. None of Maxwell's equations are explicitly 
used in defining the allowable electromagnetic 
fields; instead, it is required that the instantaneous 
field be in the range of the operator T. The two 
time-independent Maxwell's equations are then auto­
matically satisfied (because of the previously stated 
assumptions of charge neutrality). After the self­
adjointness of T is established (and therefore, the 
existence of a complete set of eigenfunctions is 
shown), time dependence is introduced by means of 
the operator exp (itT). The resulting time-dependent 
functions automatically satisfy the two time-depend­
ent Maxwell's equations. 

In Sec. 2 we give the mathematical definitions 
and proofs, then make the necessary physical con­
nections in Sec. 3. 

2. DEFINITIONS, THEOREM, AND PROOF 

Definitions. Let S be a smooth, simply connected, 
closed surface; M the region composed of all points 
(x, y, z), inside and on S; Sl a smooth, closed surface 

7 N. Marcuwitz, ElectrorTUlgnetic Waves, Proceedings of 
a Symposium Conducted by the Mathematics Research 
Center, U. S. Army, at the University of Wisconsin, Madison, 
on 10-12 A'pril1961~~dited by R. E. Langer (The University 
of WisconSIn Press, Madison, 1962), p. 109. 

B C. H. Wilcox, Ref. 7, p. 65. 

entirely surrounded by S (and not touching S); 
Ml the region composed of points inside and on Sl, 
and let M2 be the rest of M (see Fig. 1). Define the 
vector lJ in the region M 1, as an everywhere-bounded, 
real, and well-behaved function of x, y, z, with the 
further restriction that on the surface Sl, the scalar 
product lJ·n ;:of 0 (where n is a normal vector to 81), 

except at most on some isolated points or lines. Let 
E(x, y, z) and H(x, y, z) be (possibly complex) vector 
functions, both defined throughout M such that 
V xE and V xH are well defined; let E(X, y, z) and 
p,(x, y, z) be everywhere positive, real and bounded 
functions, defined throughout M. 

Form the six-component vectors 

(2.1) 

for any two such vectors, define the scalar product: 

(F1 , F2) = -2
1 1 (£~·E2 + p,H~·H2) dV, (2.2) 

over M 

and on all such vectors define the operator T as 
follows: 

where 

j = fl1-2
[lJ(lJ.v xH) - Ex lJ] 

o in M2 

t) = (lJ! + t): + lJ!)l. 

(2.380) 

(2.3b) 

Let the domain :D of T be the set of F satisfying the 
following boundary conditions (almost) everywhere 
on Sand Sl respectively: 

(aE + ,BH) xn = 0 on S 

E xn} t' S con muous across 1 

Hxn 

(2.480) 

(2.4b) 

where a and {3 are fixed, real, scalar functions of the 
position on'S; both differentiable once, and at least 
one of them differing from zero at each point on S. 

Let L2 be the space of all vectors F for which 
(F, F) < (Xl. Let (p be the closure of the range of 1'. 
One can show at once that (p is the set of vectors F 
for which 

V . p,H = 0 throughout M, 

E·" = 0 in M I , 

V·£ = 0 in M" 

cj £·dS = 0, 
B. 

(2.5) 
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where S2 is any closed surface in the region M 2, 

enclosing MI' 
Define the Hilbert space ff as the set of all L 2 

vectors in <P. 

Lemma. Defined on the domain :0, the operator l' 
is symmetric, i.e., if FI and Fa are both in :0, then 

(FI,1'F2) = (1'FI, F2)' 

Proof. It is enough to show that for all F in :0, 

d = ~ [(F, 1'F) - (1'F, F)] = Re (F, i1'F) = O. (2.6) 

For then the substitution F = F. + iF2 in (2.6) shows 
that the real part of (FI' 1'F2) - (1'FI, F2) vanishes, 
and the substitution F = FI + Fa shows that the 
imaginary part of the same expression vanishes for 
all Fl and F2 in :0. 

To prove (2.6), integrate (2.2) by parts, thus 
splitting up the integral into surface and volume 
integrals: 

where 

A = iRe (E*.j) dV 

B = -! Re (E* xH)·dS 

and S!1) and m2l refer to integrals over SI as the 
surface is approached from region M I and region M 2 

respectively. From the definition of j in (2.3) one 
can see at once that A identically vanishes in Ml 
as well as M 2, thus, the first two integrals vanish. 
(It is at this point that the antisymmetry of the 
resistivity tensor was exploited.) Because of the 
boundary condition on SI, (2.4b), the two surface 
integrals over SI cancel. Finally, from the boundary 
condition over S, (2.4a), the last integral vanishes, 
which completes the proof of the lemma. 

Theorem. In the space ff and on the domain :0, 
the operator l' is self-adjoint. 

Proof. In view of the lemma just proved, it is 
enough to show that there exist a set of vectors 
{F;} that are in ff as well as :0, and are such that if 
for some F, 

(F,1'F,) = (1'F, F,) (2.7) 

for all F, in the set, then F is necessarily in the do­
main :0. 

To show this, first fonn two arbitrary, complete 
sets of everywhere bounded and differentiable vector 
functions {ad and {b,}, defined only on the points 

of SI, everywhere tangential to SI and b, identically 
vanishing wherever l)·n = O. Completeness is meant 
in the sense that, if the vector functions P(x, y, z) 
and Q(x, y, z), defined throughout M are such that 

1. (p.a,) dS = 0, J. (Q·b,) dS = 0 
j 8, j 8, 

(2.8) 

for all i, then (almost) everywhere on SI, 

P xn = 0, Q xn = O. (2.9) 

(The latter of these can only be true because, by 
definition, l)·n ~ 0 almost everywhere on 8 1,) 

From a, and b, construct the six-component vectors 

G, = (~), 
such that p, and q, identically vanish everywhere 
on and near 8, they are bounded and well-behaved 
everywhere, and 

p, xn = a,; q, xn = b,; 

on SI' (Note that, necessarily, G, and K, are in the 
domain :0.) If p, and q, satisfy the above require­
ments, G, and K, are in the space ff if, and only if 

V • J.LPi = 0 throught M, 

q,.t) = 0 in Mil 

V'Eq, = 0 in M 2 , 

J. Eq, ·dS = 0, 
j 8. 

(2.10) 

where 8 2 is any surface enclosing MI [Cf. Eq. (2.5)1. 
Under the assumptions made earlier, the conditions 
listed [including (2.10)] are not very restrictive, and 
there is a wide choice of Pi and q, satisfying them. 
[However, if for any i we had b, xl) ¢ 0 at a point 
where l)·n = 0, there would exist no q, satisfying 
the second of Eqs. (2.1O).J 

Substitute for Fi in Eq. (2.7) the vectors G, and K,; 
it follows at once from (2.8) and (2.9) that F in 
Eq. (2.7) satisfies the boundary condition on SI. 

To carry out the analogous proof for 8, fonn a 
complete set of vector functions Ci, defined on the 
points of S, with properties similar to the properties 
of a, previously defined on SI' Then fonn 

such that e, and h, identically vanish in and near 
M I , they are bounded and well behaved everywhere, 
and 

e, xn = {3c,; h, xn = -aC" 
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on 8 [where a and {:J are as defined in Eq. (2.4a)]. 
The vector L; thus defined is necessarily in the 
domain !D. It is easy to see that if L. satisfy the above 
requirements, they are in 5' if, and only if V 0 Ee. = 0 
and V o,uh i = 0 everywhere. Again, the conditions 
are not very restrictive, and there is a wide choice 
of Lj satisfying them. 

Substituting the vectors l. for F. in Eq. (2.7), and 
using the completeness of the set {c,} through 0 bser­
vations such as (2.8) and (2.9), it is easily shown that 
Fin Eq. (2.7) satisfies the boundary condition on 8, 
and the proof is complete. 

3. RESULTS AND DISCUSSION 

The vectors E and H in (2.1) are recognized as the 
electric and magnetic field; the scalar product of a 
vector by itself, (F, F), is recognized as the energy in 
the electromagnetic field F. As was indicated in the 
Introduction, the operator 1', defined in (2.3) is 
identified at once as -i(a/at) [j in (2.3) standing 
for electric current density]. The definition of j in 
the region M I , the region carrying helicons, is so 
designed as to make E = j x \J, and therefore \J 0 E = 0 
and 1)0 (aE/at) = 0 at all times. Physically, \) = 
- RBo, where R is the Hall coefficient and Bo is the 
steady, external magnetic field. The boundary condi­
tion (2.4a) forces Poynting's vector E xH to be 
tangential to 8, hence the surface 8 reflects all 
radiation coming onto it. 

Denote the integrand in (2.2) as F*F. Then 

2 Re (F, i1'F) 

::. ! r (F* aF + aF* F) = i. (F F). (3.1) 
2 JM at at at' 

Comparing (3.1) with (2.6), it is found that the 
operator T is symmetric if and only if the system 
conserves energy. We recall from the proof of the 
lemma that symmetry hinged upon three facts: (1) 
in region M 1 the resistivity tensor is antisymmetric, 
therefore the current and electric field are perpen­
dicular, and there is no Ohmic loss; (2) by (2.4b), 
the normal component of Poynting's vector is con­
tinuous across 8 1 ; and (3) by (2.4a) , the normal 
component of Poynting's vector is zero over 8. The 
mathematical fact that a symmetric operator has 
real eigenvalues is translated into the statement 
that a system conserving energy cannot execute 
damped or growing oscillations. The mathematical 
fact that a symmetric operator has orthogonal 
eigenvectors corresponds to the statement that if 
the electromagnetic system conserves energy, its 

total energy is the sum of the energies in the indi­
vidual modes. 

It follows from a remark made below (2.10) that 
if over a finite portion of the sample's surface 
\Jon = 0, it is not possible to establish that F in 
(2.7) satisfies the boundary condition (2.4b). In­
deed, physical considerations6 show that in that 
case, under the assumptions on which the present 
formulation is built [namely, Assumptions (i) to (iii) 
in the Introduction], the boundary of the sample 
absorbs energy, and the proof cannot be completed. 
(However, there is no difficulty in carrying out the 
proof if the surfaces in question are appropriately 
tilted or are made slightly Hwavy"; for the purposes 
of the proof it does not matter how slight the dis­
tortion is. The artificially introduced roughness of 
the surface may be thought of as "simulating" 
anomalous skin effect, in that it eliminates surface 
loss for low enough resistivities. For this simulation 
to fit the physical situation best, the depth of 
roughness must be of the same order of magnitude as 
the cyclotron radius.) 

It is proved in functional analysis9 that if an 
operator T is self-adjoint in a Hilbert space ff, then 
the equation 

1'F = wF (3.3) 

possesses a set of eigenfunctions F which span all of ff . 
The eigenfunctions are orthogonal and the eigen­
values ware real. A glance at the definition (2.3) 
of T shows that the two time-dependent Maxwell's 
equations can be compressed into the form 

-i aF(t)/at = 1'F(t). (3.4) 

It follows that once the self~adjointness of T is 
established, it is possible to construct a time-depen­
dent field F(t) from any instantaneous field F in 5' 
as follows: 

(3.5) 

The field (3.5) thus constructed satisfies Maxwell's 
equations (3.4). The sequence of expressions (3.4), 
(3.3), (3.5) resembles the sequence of expressions 
encountered in connection with SchrOdinger's equa­
tion, with similar causal relations between the suc­
cessive forms. 

The self-adjointness of l' implies that Eq. (3.5) 
is meaningful, but it does not imply that the eigen­
functions of (3.3) have finite energy, i.e., that the 
eigenfrequencies w form a discrete set. It is hoped 
that in the near future some author will show that l' 
has a unique inverse, and that the inverse is com-

e F. Riesz and B. Sz.-Nagy, Functional AnalyBi8 (Frederick 
Ungar Publishing Company, New York, 1955). 
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pletely continuous. This, together with the symmetry 
property proved in the lemma, would imply every­
thing implied by self-adjointness, and would, also 
imply discreteness and square integrability. 

We remark that the proofs of Sec. 2 do not make 
use of the fact that the space 5= is restricted to the 
range of 1'. Both proofs can be repeated without 
difficulty if the first, third, and fourth of Eqs. (2.5) 
are dropped, as long as the second is retained and 
the domain 5) is defined by (2.4). Of course, the 
results are then not physically meaningful. Also, 
if l' has a larger domain than range, it cannot pos­
sibly turn out to have an inverse, as was suggested 
in the previous paragraph. 

Eqs. (2.5) can be compressed into the statement 
that F must be in the closure of the range of 1'. The 
physical interpretation of these equations is clear. 
The first one is Maxwell's equation; the third is also 
Maxwell's equation, assuming that region M 2 con­
tains no free charges; the fourth requires that there 
be no net charge on the sample; the second, com­
bined with (2.3b) means that the resistivity tensor 
is antisymmetric. 

It is a feature of the present formulation that all 
field equations, more precisely, the four Maxwell's 
equations and the constitutive equation, are intro­
duced into the problem merely through the definition 
of a single operator. 

In closing, we wish to comment on the reflecting 
surface S. The operator 1'2 has positive eigenvalues, 
therefore, if I(? is any vector in 5=, the quantity 

(I(?, 1'~)/(I(?, I(?) (3.6) 

is larger than the square of the smallest eigenfre­
quency. Thus, to make a crude estimate, let 

I(? = 
and 

A.= 

E = (V xH) X\}, 

A. = A. = 0, 

(cos 7r( cos 7Y( cos 7r:Y 

l l l 
for Ix l::;"2' IY\::;"2' Izl::;"2 

o otherwise; 

choose the origin of the coordinate system in such a 
way that the cubical region inside which I(? ¢ 0 be 
in the interior of the sample, and choose the edge of 
the cube, l, to be as large as possible. Substitute the 
the resulting field I(? into (3.6), and assume, for 
simplicity, that E == Eo, /L == /Lo and \) is uniform. 
Then, 

[(I(?, 1'~)/(1(?, I(?)]t '" 14(27r /l)2t)/L -1. 

Thus, the smallest eigenfrequency is necessarily 
smaller than the latter quantity. Since we chose I(? 
such that I(? == 0 outside the sample, the above esti­
mate only depends on the sample's size, and not on 
the dimensions of the reflecting surface. The esti­
mate shows that, if the wavelength in free space 
corresponding to the lowest mode is denoted by Ao, 
then, to order of magnitude, Ao/l '" (l/27r) (p.o/ Eo)t l1-

1
• 

In the physical situation of Ref. 4 (but not in the 
situation of Ref. 2), (l/211")(/Lo/Eo)ll1-1 

'" 108
, i.e., 

independently of the size of the reflecting shield, the 
lowest modes can be considered quasistatic (Le., of 
essentially infinite vacuum wavelength). To esti­
mate the rate at which energy would leave the 
region M 1 in the absence of the reflecting surface, 
consider the fields due to the currents and charges 
on the sample alone; neglect all but the magnetic 
dipole radiation, and let the shield be a sphere of 
radius Ao. The ratio of the energy crossing the shield 
in one cycle to the energy inside the shield is then 
found to be of order (l/Ao)8 '" 10-24

• 

For the higher modes the rate of radiation is 
higher. However, it can be shown that if we formally 
let the speed of light outside the sample tend to 
infinity, the set of almost unattenuated modes can 
be extended to an arbitrarily large part of the 
spectrum. 
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The exact equilibrium statistical mechanics of one- and two-dimensional gaBeS, in which the particles 
interact through gravitational forces, is obtained. It is found that these systems are characterized by 
nonextensive thermodynamics leading to behavior somewhat reminiscent of the formation of a star 
from interstellar dust. 

1. INTRODUCTION 

THE object of this paper is to extend the results 
of recent studies of the statistical thenno­

dynamics of one- and two-dimensional plasmas1
-

e 

to analogous systems in which the electrostatic 
interactions are replaced by gravitational forces. 
One interesting complication which arises in these 
gases is the nonextensive nature of the thenno­
dynamic functions. 

2. ONE-DIMENSIONAL MASSES 

This section deals with a one-dimensional gas of N 
particles of length d which interact through long­
range gravitational forces. The total potential 
energy U is a sum of two tenns U' and U" where 

Uf = L U~i (2.1) 
i<i 

U: i = co IX, - Xii < d, 

= 0 IX, - X;! > d. 

X, being the position of the ith particle from the left. 
The long-range potential U" is obtained by solving 
the one-dimensional Poisson equation,' obtaming 

U" = :E gm
2 IX, - Xii, (2.2) 

i<i 

where g is the one-dimensional gravitational constant 
and m is the mass of each particle. Since all the 
masses are identical, Eq. (2.2) can be rewritten as 

N-I 

U" = L gm2n, IX;+! - X,I, (2.3) 
i-I 

n, = i(N - i). 

* From the thesis submitted by A. M. Salzberg to the 
Department of Chemistryl University of Minnesota, Minne­
apolis, Minnesota in partIal fulfillment of the requirements 
for the Ph.D. degree. 

t Present address: Allegany Ballistics Laboratory, Cumber­
land, Maryland. 

I A. Lenard, J. Math. Phys. 2, 682 (1961). 
IS. F. Edwards and A. Lenard, J. Math. Phys. 3, 778 

(1962). 
a A. Lenard, J. Math. Phys. 4, 533 (1963). 
'S. Prager, Advan. Chem. Phys. 4, 201 (1961). 
i A. Salzberg and S. Prager, J. Chem. Phys. 38, 2587 (1963). 
• M. Kac, Phya. Fluids, 2, 8 (1959). 
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Due to the indistinguishability of the particles, 
there exists one and only one discernible ordering of 
the particles; hence, the constant-volume partition 
function takes on the fonn 

Q = i L ... iX' exp (- U /kT) dXl ... dXN, (2.4) 

where L is the total length of the system. In order to 
eliminate the constraints X; ~ Xi+l ~ L, So Laplace 
transfonnation4. is perfonned to obtain the constant­
pressure partition function Q: 

Q = LX> exp (-PL/kT)Q(L) dL 

= i'" ... i'" exp [ - ( U' + 

+ P)y;) }kT dyo '" dYN, 

Yo = XI' 

y, = Xi+l - X" 
N-l 

YN = L - Ly,. 
.-0 

(2.5) 

As the only effect of Uf is to restrict the domain of 
integration, 

(
kT)N+l N ( gm2n,)-l Q= - II 1+-
P ;-0 P 

X exp [ _(d(P ~:m2n,») 1 (2.6) 

Since Q is directly related to the Gibbs free energy/ 
the thennodynamics of the ensemble can now be 
obtained: 

~=-~~~ ~~ 

= (N + 1)kT ~ (P /kT) + ~ [ d(P + gm'n,) 
+ kT ~ (1 + g"i,n,) ] ' 

7 T. Hill, Introduction to Statistical Thermodynamics (Addi­
Bon-Wesley Publishing Company, Inc., Reading, Massachu­
setts, 1960). 
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H. = a(~')/a(~) 
N 

= (N + l)kT + N dP + dgm
l Ln" 

i-O 

S. = (H. - G.)/T, 

where G., H" and S. are, respectively, the configura­
tional contributions to the Gibbs free energy, the 
enthalpy and the entropy. Since it is the deviations 
from ideal-gas behavior which are of interest, the 
excess functions G', H', and S' are examined: 

G' = G. - (N + 1)kT In (P/kT), 

be established before the standard technique of 
replacing a. sum by a.n integral is employed. 

Lemma 1. If g, m > 0, limN_CO EN/IN = 0; where 

rN
-

1 

IN = J
2 

F(N, i) di, 
N-2 

SN = L F(N, i), 
i-2 

F(N, i) = 1/(P + gm2n.), and EN = lIN - SNI. 

Proof. (N even). It can be seen from the mono­
tonicity of F(N, i) in the regions i E [1, N /2}, 
i E [N /2, N - 11 and from the fact that 
F(N, N /2 + i) = F(N, N /2 - i) that 

H' = He - (N + 1)kT, 
rN/2 N-2 

(2.8)2 12 diF(N, i) ~ t-; F(N, i) 

S' = (H' - G')/T. 

It becomes apparent upon replacing the summations 
in (2.7) by integrations that the thermodynamic 
functions are not extensive properties of the system; 
specifically, for large N, 

H' ~ dgm2N 3/6, 

S' ~ - keN In (gm2/p) + 2(b + iN) In (b + iN) 

- 2(b - iN) In (b - iN)], (2.9) 

b == [N2 + p!(gm2W· ll
• 

It is of interest to note that if the particles have finite 
length the degree of deviation from extensive be­
havior is given primarily by the enthalpy; whereas 
for point particles, the deviation arises entirely from 
the entropic terms. 

The equation of state can be directly obtained: 

(aG) N 1 
L = - -' = Nd + kT L 2 • (2.10) 

dP T ,_oP + gmn, 

It is clear from Eq. (2.10) that, even at constant 
pressure, the free length of the system is not propor­
tional to the number of particles present. Since the 
terms of the sum in (2.10) corresponding to i = 0 and 
i = N simply arise from a simultaneous translation 
of all N particles, it is natural to introduce the 
variable 

L* = L - Nd - 2kT!P, (2.11) 

where L* is the free length between the first and 
last particle. Although it is clear from (2.10) and 
(2.11) that 

lim (L* /kT) = 0, (2.12) 
N-"" 

it is of interest to examine the asymptotic behavior 
of the limit. Due to the form of the function to be 
summed in Eq. (2.10), the following lemma must 

rNI2 

S 2 J
2 

diF(N, i-I), (2.13) 

hence 

EN S 21iNI2 di[F(N, i) - F(N, i - 1)]1 ' 

S 21f diF(N, i)! + 2 iJ::~l diF(N, i)!. 

Since for sufficiently large N, gm2 and P can be 
neglected in comparison to gm2iN 

EN ~ In (2)/(Ngm2
) + o(1/N2

). (2.14) 

From the integration of F(N, i), we obtain 

[ ( iN + b + 2 )]!( 2) IN = In _ iN + b + 2 bgm, (2.15) 

which reduces for N » P! (gm2
), In N » -1 to 

IN ~ 2ln (N)/(Ngm~. (2.16) 

Consequently limN_CO (EN/IN) = 0, proving the 
lemma. 

From Lemma 1, and Eqs. (2.10), (2.11), and 
(2.15), the following limiting expression for L* can 
be derived: 

lim (L*Ngm2/2kT In N) = 1, gm2 > 0, (2.17) 
N-", 

lim (PL* /NkT) = 1, gm2 = 0. 
N .... "" 

One immediate consequence of Eq. (2.16) is that for 
sufficiently large N, L* is independent of the external 
pressure, a result reminiscent of the stability of a 
star. A similar result is found in the limit g ~ 00, 

and can be interpreted as a gradual aggregation of 
the N particles into one giant particle. 

3. TWO-DIMENSIONAL POINT MASSES 

Solution of the two-dimensional Poisson equation' 
leads to a logarithmic potential between two point 
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masses. In particular, 

UH = gm2 In (r,;) (3.1) 

where rH is the distance between particles i, j. 
Thus the configurational partition function Q of 
point masses confined to an area A is given by 

Q N,-I J f II -gm'/kT d d =. . . . r,; a1 .,. aN. 
A .<i 

(3.2) 

Although the integration in (3.2) can not be carried 
out, introduction of the coordinates x: = X,A -.5 

allows us to write the relation 

In (Q) = (N - L: m,m;/2kT) In (A) + In (Q*) (3.3) 
i<i 

in which Q* is a reduced partition function inde­
pendent of A. Since the formal development of (3.3) 
tacitly assumes that Q* is finite, it is essential to 
determine its radius of convergence. As the integral 
represented by Q* has its domain bounded from 
above by unity, divergence can occur only at the 
lower limit corresponding to an arbitrarily close 
approach of two or more particles. With this in mind 
we define for every8 r~i' 

(3.4) 

where R;; is a positive constant and z is a scaling 
parameter. In this representation 

8 A. Lenard (private communication). 

(3.5) 

where F is a positive definite function of all the R;; 
and u = gm2N(N - 1)/2 + 1 - 2N. Clearly the 
criterion for the convergence of the integral is that 

Ngm2/4kT S; 1 + gm2/4kT. (3.6) 

For all finite values of Q* the equation of state 
follows at once 

AP = -AkT[a In (Q)/aAh 

= NkT(1 - (gm2N - gm2)/(4kT» , (3.7) 

where the differentiation is to be carried out without 
changing the shape of the container. Although (3.7) 
appears to predict negative pressure at sufficiently 
low T or large N, Q* is infinite in this region and the 
treatment leading to the equation of state is not 
valid. A physical interpetation of this behavior 
is that as the gravitational forces become dominant, 
the system coalesces to a single point. 
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Simple conditions on the potential are given, which are sufficient to secure the existence of at 
least one bound state for each angular momentum I S L. One such condition is given by the inequality 

-iR 

dr rVer) (~j 'L + 1 _ L' dr rVer) (~l'L + 1 ~ 2L + 1, 

where R is an arbitrary radius and VCr) an everywhere attractive potential. Upper bounds on the 
energy of the lower bound state for each angular momentum are also given. 

l. INTRODUCTION 

LET VCr) be an attractive central potential, such 
that the integral 

I = - {' dr r VCr) (1.1) 

is finite. Note that I is positive and dimensionless in 
the units chosen (li = 2m = 1, m being the mass of 
the particle considered), Jost and Pais have shown 
that a necessary condition for the existence of a 
bound state is I ~ e Subsequently Bargmann has 
proved the more-general inequality 

nl < I/(2l + 1), (1.2) 

where nl is the number of bound states with angular 
momentum l.2 He also showed that this estimate 
is the best possible, in the sense that potentials may 
be constructed which saturate it for any given value 
of nl' More recently Schwinger has given a new 
derivation of this inequality and has extended it, 
deriving lower limits for the energies of any bound 
state. 3 It is the purpose of the present paper to 
provide upper limits for the energies of bound states, 
and therefore also simple conditions on the potential 
sufficient to guarantee the existence of at least one 
bound state. We consider only the lower bound state 
for each angular momentum. These results supple­
ment those of Bargmann and Schwinger and may 
be useful to obtain quick estimates of the properties 
of phenomenological potentials. 

Upper limits for the energies of bound states, and 
therefore also conditions on the potential sufficient 
to guarantee the existence of bound states, may also 
be obtained from the well-known Rayleigh-Ritz 

1 R. Jost and A. Pais, Phys. Rev. 82, 840 (1951). 
2 V. Bargmann, Proc. Nat. Acad. Sci. U. S. 38, 961 (1952). 
8 J. Schwinger, Proc. Nat. Acad. Sci. U. S. 47, 122 (1961). 

variational principle.4 We believe that our results 
may be of some interest nonetheless, in view of 
their close correspondence with those of Bargmann 
and Schwinger. 

Our treatment is based on the phase approach 
to scattering theory.a The results are stated and 
proved in Sec. 3, Sec. 2 being used for the proof 
of a mathematical theorem. 

2. ON THE POLES OF THE SOLUTION OF 
A RICCATI EQUATION 

Consider the Riccati equation 

y'(x) = f(x)[y(x) + g(x)Y, 

with boundary condition 

yeO) = 0, 

(2.1) 

(2.2) 

and with the following limitations on the real func­
tions I(x), g(x): 

f(x) ~ 0, 

g(x) ~ o. 
(2.3a) 

(2.3b) 

Let the function g(x) possess the following properties: 

o ::; g(x) ::; g(x), 

lim [y(x)/g(x)] = 0, 
:.-00 

g'(x) ~ O. 

We now prove the following 

(2.4a) 

(2.4b) 

(2.4c) 

Theorem: A sufficient condition for the function 
y(x) to have at least one pole in the interval of 

• See, for instance, L. Spruch, "Minimum Principles in 
Scattering Theory," in Lectures in Theoretical Physics, edited 
by W. E. Brittin, B. W. Downs, and J. Downs (Interscience 
Publishers, Inc., New York, 1962), Vol. IV. 

6 F. Calogero, Nuovo Cimento 27, 261 (1963). 
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the real axis between 0 and X > 0 is that 

LX dx g2(x)f(x) ~(g(X). (2.5) 

The proof is per absurdum. Let us assume that y(x) 
is finite in the interval 0 to X. We then intro~uce 
the function fj(x) through 

fj'(x) == f(x)ffJ(x) + g(X)]2 (2.6) 

and 

yeO) == O. (2.7) 

We now note that y(x) is positive and that 

Therefore the hypothesis of the theorem, Eq. (2.5), 
implies 

u(X) ~ 1. (2.19) 

This contradicts Eq. (2.17), so that the original 
assumption that y(x) be finite in the interval 0 to 
X is disproved, q.e.d. 

We also note without proof that a nece88ary 
condition for the divergence of y(x) in the interval 
OtoXis 

LX dxg(x)f(x) ~ 1. (2.20) 

fj(x) :$ y(x) (2.8) For the validity of this result it is required, besides 

as implied by Eqs. (2.1) and (2.6). Therefore fj(x) is the conditions Eqs. (2.3a) and (2.3b), that g(x) be 
also finite in the interval 0 to X. a nondecreasing function. 

We then introduce 

z(x) == y(x)/[y(x) + O(x)]. (2.9) 

Then Eq. (2.4b) implies 

z(O) == 0, (2.10) 

while the fact that g(x) and y(x) are positive and 
finite implies, together with (2.4b) and (2.4c), that 

o :$ z(x) < 1 (2.11) 

in the interval 0 to X. On the other hand z(x) 
satisfies the differential equation 

z'(x) == - [0' (x)jg(x)]z(x) [1 - z(x)] + g(x)f(x), (2.12) 

as follows from Eqs. (2.9) and (2.6). From this 
equation and Eqs. (2.4a) , (2.4c), and (2.11) we see 
that 

Z'(x) ~ - [g'(x)/g(x)]z(x) + g(x)f(x). (2.13) 

Finally we introduce u(x) through 

1£'(x) == - [U'(x)/U(x)]u(x) + g(x)f(x) (2.14) 

and 

u(O) = O. (2.15) 

Then 

u(x) :$ z(x) , (2.16) 

and from Eq. (2.11), 

u(x) < 1 (2.17) 

in the interval 0 to X. But the equation for u(x) 
is integrable and it yields 

u(x) == 1" dx'gt(x')f(x')/g(x). (2.18) 

3. APPLICATION TO THE BOUND-STATE PROBLEM 

For simplicity we derive the results only for S 
waves. The generalization to all partial waves is 
easily done, and we give the relevant results at 
the end. 

The condition for the existence of an S-wave 
bound state of energy E :$ _q2 is equivalent to 
the requirement that the solution of the Riccati 
equation . 

S'(r) == (2q)-lV(r)[S(r)e-ar _ ear ]2 

with boundary condition 

S(O) == 1 

(3.1) 

(3.2) 

has at least one pole on the positive real axis.' 
We may assume here that the potential V (r) vanishes 
at infinity faster than exponentially, to dispose of 
the difficulty due to the divergence in the asymptotic 
behavior of S(r) which otherwise occurs:' Clearly 
this assumption does not modify any of the physical 
properties, and in fact it may be forgotten once we 
have obtained our final results. 

It is convenient to make a change in the dependent 
variable, setting 

S(r) == 1 - 2qA(r). (3.3) 

Of course this substitution does not affect the 
location of the poles, which is the same for S(r) 
and A (r). On the other hand A(r) satisfies the 
equation 

A'(r) = - V(r)e-2«rIA(r) + ear sinh qr/q]2, (3.4) 

with boundary condition 

A(O) = O. (3.5) 
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We now assume the potential to be everywhere 
attractive 

(3.6) 

A second choice is 

goer) = R(l - e -rIll). (3.16) 

W This yields, as the condition for the existence of at 
e may then apply the theorem of the preceding least one bound state 

V(r) = - \V(r) I· 

section, which immediately implies for the energy 
of the ground state the upper bound 

E ~ _q2, (3.7) 

where q is a solution, if any, of the equation 

f'dr \V(r) I e-2"g\r) = {j(a:». (3.8) 

Here g(r) is an arbitrary function, restricted by the 
three conditions 

o ~ g(r) ~ eQr sinh qrlq, (3.9a) 

lim [r3+~/g(r)] = 0, (3.9b) 
r_O 

g'(r) ~ O. (3.9c) 

The second condition corresponds to Eq. (2.4b) 
because6 

R 1'" dr \V(r) I (1 - e- r/R
) ~ 1. 

For instance, for an exponential potential 

V(r) = -\Vol exp (-rlro) , 

(3.17) 

setting R = 1.41ro we find \Vol ~ ~ 2.91. Barg­
mann's necessary condition yields \Vol r~ > 1. The 
minimum value of ! V o! r~ for which a bound state 
becomes actually possible is 1.44. 

A third choice, and usually a better one, is 

goer) = r, r ~ R, 
(3.18) 

goer) = R, r ~ R. 

This yields, as the condition for the existence of at 
least one bound state 

A(r) ~ const X r3+~ , 
r-O 

(3.10) iR 

drr \V(r) I (rIR) + L'" drr !V(r)! (Rlr) ~ 1. (3.19) 

where '1 is defined by the behavior of the potential 
in the origin through 

V(r) ~ const X r', 'I) > -2. (3.11) 
,_0 

We do not elaborate on the possible choices for 
g(r), which may be suited to the specific problem. 
We proceed instead to the case q = 0, which is 
particularly interesting, for it yields a sufficient 
condition on the potential for the existence of at 
least one bound state. The condition reads 

1'" dr \V(r) I g~(r) ~ go( a:», (3.12) 

where now goer) is restricted by the conditions 

o ~ goer) ~ r, 

lim [r3+~/go(r)] = 0, 
.-0 

g~(r) ~ O. 

(3.13a) 

(3.13b) 

(3.13c) 

We mention three possible choices for goer). The 
first is 

goer) = rRI(r + R). (3.14) 

This yields, as the condition for the existence of at 
least one bound state 

1'" dr r ! VCr) ! rRI(r + R)2 ~ 1. (3.15) 

Note that in all cases the distance R is arbitrary' 
its choice may be delayed to after the integrals hav~ 
been performed. The more stringent limitation is 
usually obtained choosing for R a value close to the 
range of the potential, independently from the 
strength of the potential. 

For a potential which vanishes identically beyond 
the range ro one may chose R = ro in Eq. (3.18) 
(although this choice need not be the most con­
venient one, see below). The sufficient condition for 
the existence of one bound state becomes then 
simply 

fO drr \V(r)! (rlro) ~ 1. (3.20) 

This may be compared with the necessary condition 
for the existence of one bound state, which in this 
case is 

{O dr r \V(r)! > 1. (3.21) 

For instance, for a square-well potential of depth 
\Va} and range r o, Eq. (3.20) yields !Vo! r~ ~ 3, 
while Eq. (3.21) yields \Vo! r~ > 2. The actual 
limiting value for the existence of a bound state 
is \Vol r~ = 2.46. A more stringent sufficient con­
dition is obtained using Eq. (3.19) with R = iro 
rather than Eq. (3.20), for it yields /Vo! r~ ~ 2.67. 
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Another case of some interest is the potentia16 

VCr) = -(1/ro)O(r - ro). (3.22) 

In fact setting R = ro + E in Eq. (3.19) we find 
as a sufficient condition for the existence of at least 
one bound state 1 ~ 1, while the Jost-Pais-Barg­
mann necessary condition is I > 1. This proves 
that the value of 1 at which a bound state becomes 
possible must be 1, a result which may be verified 
by direct computation. Note that this also implies 
that the condition of Eq. (3.19) is the best possible, 
for we have now found a potential which saturates it. 

Finally we mention the generalization of these 
results to higher partial waves. It is achieved sub­
stituting everywhere [Ji?J (iqr)]±1 in place of exp 
(=Fqr) and -iJ,(iqr) in place of sinh(qr). Here MIl (z) 
and JI(Z) are the Riccati-Bessel functions, defined 
as in Ref. 5. With these substitutions, which in­
cidentally keep all the equations real, Eqs. (3.8) 
and (3.9) yield upper limits for the energy of the 
lower bound state corresponding to any given value 
of the angular momentum l. 7 As for the conditions 
on the potential sufficient to secure the existence 
of at least one bound state of angular momentum 1 
(and therefore also for all angular momenta up to l) 
we find, in place of Eq. (3.8), the relation ' 

1'" dr !V(r)! r-2Ig~(r) ~ UI(oo)(21 + 1), (3.23) 

with gl(r) restricted by the conditions 

a This may be considered as the appropriate limit of a 
finite potential of appropriate shape. 

7 One must also substitute Eq. (3.24b) for Eq. (3.9b). 

o ::; gl(r) ::; r21+l, 

lim [r21+3+~/gl(r)] = 0, 
.~o 

gf(r) ~ O. 

Corresponding to Eq. (3.15) we now have 

1'" dr r 'V(r) , (rR)21+1/(r21
+
1 + R21

+
1l 

~ 2l + 1, 

and corresponding to Eq. (3.19) we have 

lR drr 'VCr)! (r/R/ I
+
1 

(3.24a) 

(3.24b) 

(3.24c) 

(3.25) 

+ In'" drr /V(r) I (R/r?l +1 ;::: 2l + 1. (3.26) 

For instance for a square well of depth 'Vol and 
range ro setting R = !ro in this equation yields 
/Vo! r~ ~ 11.7 as the sufficient condition for the 
occurrence of a P-wave bound state, while Barg­
mann's necessary condition yields /Vol r~ > 6. The 
exact limiting value is 9.9. It is also easily seen that 
Eq. (3.26) provides the best possible estimate in 
the sense that there exists a potential which saturates 
it. This is the potential equation (3.22) with I = 
21 + 1, which also saturates the Bargmann condi­
tion, Eq. (1.2), for n, = 1. 

Finally we observe that it would be easy to prove 
Bargmann's and Schwinger's results on the basis 
of Eq. (3.4) (or its generalization to higher partial 
waves), using the result mentioned at the end of 
Sec. 2. 
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Feinberg and Pais have considered a "reduction" formula for the Fourier transform of functions 
which depend only on the hyperbolic distance. They have shown that the formula is valid in partic­
ular cases and stated that it should be valid in general. 

We show that it is valid for any causal distribution and furthermore that it is actually an exten­
sion of the well-known Bochner Theorem on the Fourier transform of radial functions. 

1. INTRODUCTION 

IN their work on weak interactions, Feinberg 
and Pais! have used the following "reduction" 

formula2
: 

(1) 

4' 2 [1 J(q2) = ~; c H~1)(qY)I/I(y2)y2 dy 

- {' J 1(qY)I/I(y2)y2 dy J, (2) 

where 

2 '+ 2+ 2 2 2 2+ 2+ 2 ' 2 Y = Y1 y, Ys - y" q = ql q2 qs - q4' 

In all the cases considered by Feinberg and Pais, 1 

it turns out that the contour integral vanishes. 
Furthermore, they state: "We are convinced, that 
any alternative treatment of the contour integral 
leads to physical absurdities."s This means that, 
in fact 

F(I/I(y2» = _ ~'lr J 1(qY)I/I(y2)y2 dy. 4' 21"" 
q 0 

(3) 

We would like to point out that the latter formula 
is actually the causal version of the following well­
known theorem, due to Bochner' (which we are 
writing for a four-dimensional space): 

If 

f(Y1Y2YaY4) E: L 1, 

depends only on R = (y~ + y~ + Y: + y!) i, then 
1 G. Feinberg and A. Pais, Phys. Rev. 131, 2724 (1963). 
! Reference 1, p. 2735. See also, Y. Pwu and T. T. Wu, 

Phys. Rev. 133, B 778 (1964). 
a Reference I, p. 2738. 
, S. Bochner and K. Chandrasekharan, Fourier Transform 

(Princeton University Press, Princeton, New Jersey, 1949), 
p.69. 

the function 

depends only on 

p = (q~ + q~ + q: + q!)i. 

Furthermore, 

(4) 

In the applications to physics of form (3), I/I(y2) 
is not, in general, an ordinary function but a distribu­
tion. What is actually needed for our purpose is 
formula (4) for the case in which f is a tempered 
distribution.5 This extension has been done by one 
of us.6 

2. CAUSAL DISTRIBUTIONS 

We shall first define the "causal" distributions.7 

Starting with a radial distribution,6 which will be 
simply written as I/I(y~ + y: + y: + y!), we introduce 
a positive parameter a by means of the following 
definition (ip is a test function E:S 5): 

(I/Im, cp) = ('l1(y~ + y~ + y: + ay!), CP(Y1, Y2, Ya, y,» 

== ~ ('l1(R
2
), CP(Y1' Y2, Ys, ~)). 

As usual, 'l1 m will be said to be analytic in a if for 
any test function cP, the ordinary function (I/Im, cp) is 
analytic in a.8 When 'l1 G can be analytically continued 
into the whole of the upper half-plane of a, we define 

'L. Schwartz, Theorie des distributions (Hermann & Cie., 
Paris, 1951), Vol. 2. 

6 A. Gonzalez Dominguez (to be published). 
7 We follow the steps discussed by 1. M. Guelfand and 

G. E. Shilov, Les distributions (Dunod Cie., Paris, 1962), 
in partiCUlar Chap. III, 2, p. 264. 

8 Reference 7, p. 148. 
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a causal distribution by the formula. 

\l!(y' + iO) = lim 1/t(y~ + y: + y: + ay!). (5) 
0-+-1+.0 

An "anticausal" distribution can be defined as the 
complex conjugate of a causal one. 

We now show that it is possible to compute the 
Fourier transform of a causal distribution by means 
of Formula (3). In fact, 9 

(I, cp) == (F(1/t), cp) = (1/t, rl(cp» 

lim (1/t", F-l(cp» = lim (F(1/t,,), cp); 
0-+-1+;0 (1--1+,0 

i.e., 

1 = lim F(1/t,,) = lim 1", 
Q--1+;0 0--1+iO 

where 

I,,(ql, q" qa, q.) = J 1/tM + y: + y: + ay!)e'qov ffy. 

For positive a we have 

I( q" q" qa, ~) 

= ~ J 1/t(y~' + y~' + y~2 + y~')e'·'·' ffy, (6) 

where the fourth component of q: is q,/at. 
Now, using Bochner theorem [Formula (4)], we 

obtain 

[(p') = I(q~ + q: + q: + ~ q:) 

= ~ l CD 

1/t(R' )JI (pR)R'dR. (7) 
a p 0 

Formula (6) is valid for positive a. By making the 
8 See Ref. 5, p. 106. 

analytic continuation in the upper half-plane of the 
parameter a and taking the limit a -+ -1 + iO, we 
obtain 

I(q~ + q: + q: + q!) == 1(q2) 

= ~21" 1/t(R2)JI (qR)R' dR, (8) 
'tq 0 

which coincides with formula (3). [It is understood 
that l(q') means l(q' - iO); see Formula. (5).] 

Formula. (8) is valid for causal distributions. For 
anticausal ones the result is 

I(q') = - ~1r'l" 1/t(R2)Jl(qR)R'dR, 
'tq 0 

(9) 

where it is understood that q2 means q2 + iO. 

3. EXAMPLE 

As an example of application we consider now the 
causal distribution 

1/t(y2) = (y' + iOY', (10) 

where ~ is any complex number. A direct application 
of Formula (8) gives1o

: 

2 411"' l CD 
210.+1 411"2 22~+2r(X + 2) 

I(q) = iq 0 Jl(qy)y dy = T (q')}.+2r(-X) , 

which is the correct result.ll 

It should be noted from (10) that, near the origin, 
1/t(y2) has a singularity worse than y-' when X < -1. 
Nevertheless, Formula (8) is still valid, although the 
contour integral considered by Feinberg and Pais is 
not meaningful in t.his case. 

10 W. Groebner and N. Hofreiter, Integraltafel (Butimmte 
Integrale) (Springer-Verlag, Berlin, 1958), p. 196. Also For­
mula (1), p. 198, analytically extended in ". 

11 Reference 7, p. 278. 
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